
Three-Dimensional Turbopump Flowfield
Analysis

Final Report i

O. R Sharma, K. A. Belford and R. H. Ni

United Technologies Corporation
Pratt & Whitney
Commercial Engineering

April 27, 1992

Prepared for

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Center, AL 35812
Under Contract NAS8-36950

NationalAeronautics and
Space Administration

( f',tA S A- C ';:_-/P'_ y/_'" THREE-_]I MFNS ICINAL

TUr_: _r'-',J:!? r-L3_.!FT!_LO A',IALYSIS Final

(PW:.) _':1 !_

N93-12539

Uncl as

G3/3_, 0127116





FOREWORD

The authors are grateful to Dr. Man Mohan Rai of the NASA Ames Research Center for
providing the original version of the CFD code used in the present program and for his help in
modularizing the code. The authors are thankful to Dr. Rai's colleagues Dr. Nateri Madavan and
Dr. Akil Rangwala for sharing their unpublished results of evaluation of the code against UTRC
Large Scale Rotating Rig data and for providing modifications to the code made to account for
H-ratio effects. The authors are also grateful to Dr. Roger L. Davis and Dr. Daniel J. Dorney of the
United Technologies Research Center for their helpful discussions for code debugging and for
conducting extensive grid sensitivity studies in their investigation, funded by NAVAIR Contract
#N00140-88-C- 0677, using a version of the code utilized in the present program. The authors are
thankful to the Pratt & Whitney management, in particular Dr. G. E Pickett, Mr. L. R. Anderson,
Dr. SeyfTanrikut, Mr. Dan Minior and Mr. Jeff Bogoian for their continued support and
encouragement during the course of the program. The authors appreciate continued technical
discussions and dialogues with Dr. Helen McConnaughey, Dr. Luke Schutzenhoffer and Ms. Lisa
Griffin of the NASA MSFC who ensured the focus of the present effort in developing a reliable design
procedure for rocket turbopumps was not compromised by the time constraints in the program. This
work was funded by NASA MSFC Contract #NAS8-36950 under the project management of Ms.
Elaine Hamner, Ms. Irene Dolin and Ms. Janice Burrough, the authors appreciate the patience of the
project management in allowing execution of the technical program in a cost effective manner. Dr.
Helen McC.onnaughey and Ms. Lisa Griffin were the technical monitors of the program. Finally, the
authors would like to thank NASA MSFC computer personnel for their support during the execution
of the program.





TABLE OF CONTENTS

Section Page

FOREWORD ....................................................................... i

SUMMARY ............................................................ . .......... 1

1. INTRODUCTION ............................................................. 2

2. BACKGROUND ............................................................... 3

2.1 Potential Flowfidd Interaction ................................................ 4

2.2 Wake & Temperature Streak Interaction ....................................... 6

2.2.1 Effect of Upstream Wakes on Losses and Heat Loads ...................... 7

2.2.2 Effect of Upstream Wakes on Secondary Flows ........................... 8

2.2.3 Effects of Upstream Temperature Streaks on Segregation of Hot and
Cold Air in Turbine Rotors ............................................ 9

2.3 Interaction Due to Large Scale Organized Vortical Flow Structures ................ 12

2.4 Application of CFD Codes in Turbomachinery ................................. 18

2.4.1 State-of-the-Art .................................................. 18

2.4.2 First Generation of CFD Code for Turbomachinery ...................... 19

2.4.3 Second Generation of CFD codes for "Ihrbomachinery .................... 24

2.4.4 Future Direction .................................................... 27

3. THEORETICAL ANALYSIS .................................................... 31

3.1 Governing Equations ....................................................... 31

3.2 Integration Procedure ...................................................... 34

3.3 Turbulencefl'ransition Model ................................................ 39

3.3.1 Baldwin-Lomax Turbulence Model .................................... 40

3.3.2 Turbulence Model for Surface Roughness ............................... 42

3.3.3 Turbulence Model for Extra Rates of Strain ............................. 43

3.3.4 Transition Model .................................................... 48

3.4 Boundary Conditions ....................................................... 49

3.4.1 Inlet Boundary Condition ............................................ 49

3.4.2 Surface Boundary Conditions ......................................... 50



TABLEOF CONTENTS (Continued)

Sec_n Page

. CODE VE_rICATI ON ........................................................ 52

4.1 Verification of the 2D Steady Aspect of the Code ............................... 52

4.1.1 Kopper's Cascade ................................................... 53

4.1.2 Hodson's Cascade ................................................... 54

4.1.3 Dring's Stator (Mid.pan) ............................................. 56

4 1 4 Dring's Rotor (Midspan) 57. . ...***.**o*******..***o*..***.***********-*'*

4.1.5 Transonic Cascade ................................................... 59

4.1.6 Energy Efficient Engine (E3) Turbine Lightweight Cascade ................ 59

4.2 Verification of the 3D Steady Aspect of the Code ............................... 63

4.2.1 Dring's Annular Cascade - UTRC LSRR First Stator .................... 64

4.2.2 Langston Cascade ................................................... 71

4.3 Tip Leakage Prediction Aspect of the Code .................................... 83

4.4 Unsteady Flow Prediction Aspect of the Code .................................. 85

5. CODE APPLICATION ......................................................... 97

5.1 Railly's Radial Impeller ..................................................... 97

5.2 Pratt & Whitney Full Scale Turbine ........................................... 99

6. CONCLUSIONS AND FUTURE DIRECTION .................................. 111

REFERENCES .................................................................. 112

*i*

111



LIST OF ILLUSTRATIONS

F re

2.1.1

2.1.2

2.1.3

2.2.1

2.2.2(a)

2.2.2(b)

2.2.3

2.2.4(a)

2.2.4(b)

2.2.4(c)

2.2.5

2.3.1

Page

Potential Flow Pressure Gradients ....................................... 4

Range of Instantaneous Pressure Distributions Measured in the United

Technologies Research Center Large Scale Rotating Rig (UTRC LSRR)
on Stator and Rotor Airfoils ............................................ 5

Simulations (Rangwala et al. (1991)) Conducted for a Turbine Stage by
Using a 2I) Unsteady Navier-Stokes Code Show That Time-Averaged

Diffusion on the Upstream Vane is Influenced by the Axial Gap Between
the Vane and the Rotor ................................................ 5

Rotor Inlet Gas Temperature Distortion Causes Large Variation in Rotor

Airfoil Incidence Angle. Simple Calculations Conducted for Hot to Cold

Temperature Ratio of 1.7 Indicates Incidence Angle Variation of 12"

and 40" for Typical High and Low Flow Coefficient ........................ 6

Measured Time-Resolved Heat Transfer on a Turbine Airfoil Suction Side

(Doorly et al. (1984)) at Two Background Turbulence Levels in an Unsteady
Environment Shows a Larger Effect on a Laminar Boundary Layer and

Little Effect on a Turbulent Boundary Layer .............................. 7

Measured Streamwise Distribution of Time-Averaged Stanton Number of

Blair et al. (1988) and Sharma et al. (1988) and Boundary Layer Thickness

of Hodson (1983) Show Larger Values in an Unsteady Environment Than

in a Steady Cascade Configuration ....................................... 8

Secondary Flow Structures Downstream of a Rotor (Sharma et al. (1988))
Obtained From Unsteady Measurements Show Large Variation in Their

Size, Indicating Effects of Upstream Stator Wakes ......................... 9

Schematics of the Experimental Apparatus Used to Simulate the

Redistribution of Hot Streak in the Turbine Rotor (Butler et al. (1986)) ...... 10

Contour Plots of Normalized CO2 Concentration Downstream of the First

Stator in the UTRC LSRR Obtained with Circular and Rectangular Hot

Streaks; High Values Imply High Temperatures ........................... 10

Spanwise Distribution of Normalized CO2 Concentration Profiles

(Indicators of Temperatures) Measured in the Rotor Frame for the
Circular and Rectangular Hot Streaks ................................... 11

Larger Time-Averaged C02 Concentration (Temperatures) Measured on
the Pressure Side of the Rotor Airfoil Relative to the Suction Side Indicate

Segregation of Hot and Cold Air ....................................... 11

Two Parallel Horizontal Lines Upstream of the Cascade Distort Into

Vortical Structures at the Leading and Trailing Edges of the Cascade. Flow

Visualization Tests Conducted at U. of Connecticut by Pratt & Whitney ...... 12

iv



LIST OFILLUSTRATIONS(Continued)

2.3.2

2.3.3

2.3.6

2.4.1

2.4.2

2.4.3

2.4.4

2.4.5

2.4.6

2.4.7

Page

Change in Airfoil Loadings and Exit Gas Angles as Affected by Cascade

Inlet Boundary Layers Langston's Data (Langston et al. (1977), Sharma
et al.(1990))............................................... • ........ 13

Measured Streamline Patterns on the Airfoil Suction Side Indicating the

Change in the Size of Secondary Flow Vortices Due to Inlet Boundary

Layer .............................................................. 14

Endwall Secondary Flow Vortex Affects External Heat Loads on Airfoil

Suction Surface at Mid-Span (Sharma and Grazianl (1982)). Midspan
Loadings in the "Bvo Tests are the Same .................................. 15

Cascade Endwall Flow Structure (Sharma & Butler (1986)) ................ 15

Unsteady Instantaneous Total Pressure Loss Coefficient Downstream of the

Second Stator Indicate that Rotor Secondary Flow Vortice Periodically

Persist Through the Second Stator (Sharma and Syed (1991)) ............... 16

Analytical Predictions Underestimate External Heat Load on the Second

Stator Airfoil Suction Surface for Blair et al. (1989) tests. This Result is

Opposite to the Experiments and Predictions in Steady Cascade

Configurations in Figure 2.2.2(b) and 2.3.3 ............................... 17

Application of Computational Fluid Dynamics Codes Have Resulted in

Improved Performance. Further Performance Improvements Are Possible

With Unsteady Code Applications ...................................... 18

Low Loss Airfoil Design Criteria Established Through Extensive Data

Base Review. No Leading Edge Diffusion, Large Acceleration Regions,
Small Diffusion Regions ............................................... 19

Mainstream Pressure Gradient Effects More Pronounced on Thermal

Boundary Layers Than on Momentum Boundary Layers in

Transitional Region ................................................... 20

Transition Model of Sharma (1986) Gives Better Estimate of Heat Load

for Consigny and Richard's Airfoil (1982) Than the Launder-Jones (1972)

Two Equation Model ................................................. 21

2-D Viscous and Inviscid Codes Used to Optimize Shapes of Airfoil for

Improved Performance ............................................... 21

Mid-Span Losses on the 2nd Stator as Influenced by the Unsteadiness
Generated by the Upstream Rotor Airfoil Wake .......................... 22

Additional Time-Averaged Loss Generated Due to Unsteadiness Induced

by Upstream Wakes can be Related to Reduced Frequency; Schultz (1977),
Sharma et al. (1988, 90) ............................................... 22



LIST OF ILLUSTRATIONS (Continued)

2.4.9

2.4.10(a)

2.4.10(b)

2.4.11

2.4.12

2.4.13(a)

2.4.13(b)

2.4.14(a)

2.4.14(b)

3.3.1

Page

Quasi-Steady Boundary Layer Code Gives Good Estimate of Extra
Losses Generated Due to the Effect of Unsteadiness ...................... 23

2-D Navier-Stokes Code With Improved Transition Model Shows

Separation Bubble on Airfoil Pressure Side and Predicts its Effect

on Airfoil Loading ................................................... 23

Both 3-D Euler and 3-D Navier-Stokes Code Yield Good Agreement
with Langston's Cascade Data ......................................... 24

Both 3-D Euler and 3-D Navier-Stokes Code Show Good Agreement with

Langston's Cascade Data for Suction Surface Streamlines and Loading
Distributions on the Airfoil Surfaces .................................... 25

Schematics of a Two-Stage Turbine Showing the Strategy Used in

Computing 3-D Flows by Using Multi-Stage Euler Code. Flowfield

Downstream of Each Airfoil Row is Averaged and Calculations are
Conducted in Their Frame of Reference ................................. 26

Three-Dimensional Multi-Stage Euler Code Gives Good Estimates of

Time-Averaged Loading for Airfoils in Unsteady Environment ............. 26

Rotor Exit Flow Total Pressure Loss Contours in the Absence of Upstream

Wakes Show Distinct Organized Structures Similar to the Ones Measured in

Cascades. A 3-D Steady Navier-Stokes Code With Best Turbulence Model
Can Only Reproduce These Flow Structures ............................. 27

Rotor Exit Flow Total Pressure Contours As They Are Influenced By Wakes

From Upstream Stator Row Airfoil Show Large Pulsation in the Organized

Flow Structure. To Predict These Flows, Viscous Unsteady 3-D Code is
Required ........................................................... 28

Rai's Unsteady Navier-Stokes Code Shows Good Agreement With Dring's

LSRR Stator and Rotor Airfoils Time-Averaged Loading Data. Similar

Predictions Have Been Obtained by Using 3-D Multi-Stage Euler Code
(Ni et al. (1990)) ..................................................... 29

Comparison of Pressure Amplitude Data on the Stator and Rotor Airfoils

at Mid-Span Between RaPs 3-D Unsteady Navier-Stokes Predictions and
Dring's Experimental Data. An Improved Agreement Between Data and

Predictions Indicated by Rai When He Used 3 Stator and 4 Rotor Airfoils

in His 2-D Unsteady Navier-Stokes Simulation. In Experiment, Rotor and
Stator Consist of 28 and 22 Airfoils Respectively .......................... 30

Comparison of Midspan Rotor Airfoil Heat Transfer Distributions
Obtained at Re = 5.8 x 105 and bl = 40" with STAN5 Predictions

for Various Wall Roughness Values ..................................... 43

vi



LIST OF ILLUSTRATIONS (Continued)

Figure

3.3.2

4.1.1

4.1.2

4.1.3

4.1.6

4.1.7

4.1.8(a)

4.1.8(b)

4.1.9

4.1.10

4.1.11a

4.1.11b

4.1.11c

4.1.11d

Page

Turbulence Model Modified to Account for Extra Rates of Strain

(Sharma & Grazianl (1982)) Yields Good Estimate of Midspan Stanton
Number on Langston's Turbine Airfoil.

(a) Nominal Inlet Boundary Layer to the Cascade.

(b) Thin Inlet Boundary Layer to the Cascade (Refer to Figure 2.3.2 for

the Magnitudes of Flow Convergence at the Cascade Airfoil Midspan) ....... 47

A RAI3DC Stator Grid ............................................... 53

Airfoil Pressure Distribution for Kopper's Cascade ....................... 54

Predicted Streaklines Near Kopper's Airfoil.

(a) Fully'Ihrbulent Calculation,
(b) Transitional Calculation ............................................ 54

Airfoil Pressure Distribution for Hodson's Cascade ....................... 55

Boundary Layer Parameters for Hodson's Cascade.

(a) Momentum Thickness,

(b) Shape Factor ..................................................... 56

2D Steady Version of the Code (RM2DC) Developed to Verify the Code
Against Basic Data ................................................... 57

Transition Model in the Code (RAI2DC) Provides Improved Estimates of

Dring's Stator Airfoil Surface Stanton Number ........................... 57

2D Steady Cascade Version of the RAI Code (RAI2DC) Developed to

Verify the Code Against Basic Data .................................... 58

Improved Turbulence Model Yields Better Agreement with Rotor Stanton
Number Data Than Available Model in the RAI Code .................... 58

Airfoil Geometry and Measured and Predicted Loadings on the Pratt &

Whitney Transonic Cascade ............................................ 59

Viscous Computational Grid for E3 Lightweight Turbine Blade ............. 60

Pressure Distribution for E3 Turbine Blade, 10" Incidence ................. 60

Pressure Distribution for E3 Turbine Blade, 5" Incidence .................. 61

Pressure Distribution for E3 Turbine Blade, 0" Incidence .................. 61

Pressure Distribution for E3 Turbine Blade, -5" Incidence ................ 62

vii



LIST OFILLUSTRATIONS(Continued)

F'_a'e

4.1.11e

4.1.11f

4.1.12

4.2.1

4.2.2

4.2.3

4.2.6

4.2.7

4.2.8

4.2.9

4.2.10

4.2.11

Page

Pressure Distribution for E3 Turbine Blade, -10" Incidence ............... 62

Pressure Distribution for E3 Turbine Blade, -15" Incidence 63

Total Pressure Loss Map for E3 Lightweight Turbine Blade ................ 63

Airfoil Pressure Distribution for UTRC LSRR First Stator for the

(a) 2%, (b) 50%, and (e) 98% Span,vise Locations ........................ 65

Total Pressure Contours Downstream of the UTRC LSRR First Stator.

(a) Experimentally Measured (Sharma, et al., 1985),

(b) Coarse Grid/Constant Inlet Total Pressure Calculation,

(e) Coarse Grid/Measured Inlet Total Pressure Calculation, and

(d) Spanwise-Refined Grid/Measured Inlet Total Pressure Calculation ...... 67

Total Pressure Loss Through the UTRC LSRR First Stator.

(a) Coarse Grid/Constant Inlet Total Pressure Calculation,
(b) Coarse Grid/Measured Inlet Total Pressure Calculation, and

(c) Spanwise-Refined Grid/Measured Inlet Total Pressure Calculation ...... 69

Stanton Numbers for the Midspan of the UTRC LSRR First Stator .......... 70

Predicted Stanton Number (St x 103) Contours for the UTRC LSRR First
Stator Surface.

(a) Pressure Surface,

(b) Suction Surface ................................................... 70

Predicted Stanton Number (St x 103) Contours for the UTRC LSRR First
Stator Endwalls.

(a) Hub,

(b) Casing .......................................................... 71

RAI3DC Code Yields Excellent Agreement with the Airfoil Loadings at
Various Spanwise Locations Measured by Graziani et al. (1980) for the

Thin Incoming Boundary Layer ........................................ 72

RAI3DC Code Yields Good Agreement with the Airfoil Loadings at

Various Spanwise Locations Measured by Langston et al. (1977) for the

Nominal Incoming Boundary Layer .................................... 72

Endwall Cp Contours Thin Boundary Layer ............................. 73

Endwall Cp Contours Nominal Boundary Layer .......................... 73

Theoretical Predictions Overestimate the Penetration of Separation Line on

the Airfoil Suction Surface. A Possible Solution May Be to Increase the

Number of Grid Points in the Spanwise Direction ......................... 74

..°

VIII



LIST OF ILLUSTRATIONS (Continued)

Figure

4.2.12

4.2.13

4.2.14

4.2.17

4.2.18

4.2.19

4.2.20

4.2.21

4.2.22

4.3.1

4.3.2

4.3.3

4.4.1(a)

Page

Penetration of the Separation Line on the Airfoil Suction Surface

Overpredicted by the RAI3DC Cascade Code. Increasing the Number
of Grid Points in the Spanwise Direction has a Favorable Effect on the

Penetration Height at the Trailing Edge of the Airfoil Suction Side .......... 75

Total Pressure Loss Contours Downstream of Langston's Cascade for Thin

Inlet Boundary Layer.

(a) Experimental (Grazianl et al., 1980),
(b)Predicted........................................................ 76

Total Pressure Loss Contours Downstream of Langston's Cascade,

Nominal Inlet Boundary Layer.

(a) Experimental (Langston et al. (1977)),

(b) Prediction ....................................................... 76

Total Pressure Loss, Gap Averaged, Langston's Cascade ................... 77

Total Pressure Loss, Gap Averaged, Through Langston's Cascade,
Nominal Inlet Boundary Layer ........................................ 77

Grid Refinement Study Conducted by Dorney et al., (1992) Indicates

Almost 550,000 Grid Points Are Needed to Accurately Resolve Losses
in Turbine Cascades .................................................. 78

Midspan Stanton Number ............................................. 79

Blade Surface Stanton Number Contours Thin Boundary Layer ............. 80

Blade Surface Stanton Number Contours Nominal Boundary Layer ......... 81

Endwall Stanton Number Contours Thin Boundary Layer .................. 82

Endwall Stanton Number Contours Nominal Boundary Layer .............. 82

Tip Leakage Flow Predictive Capabilities of the Rotor Code Verified ........ 84

Comparison of Calculated and Experimental Exit Total Pressure Contours ... 84

3D Euler Calculation with 51 Grid Points in Spanwise Direction Can

Resolve Tip Leakage Vortex (Staubach (1990)) ........................... 85

Spanwise Variation of Time-Averaged Pressure Distributions on the Stator.

(a) 2% Span;
(b) 25% Span;

(c) 75% Span;
(d) 98% Span.

(Madavan et ai. (1989, 91) Computations) ............................... 86

ix



LIST OFILLUSTRATIONS(Continued)

4.4.2

4.4.3(a)

4.4.3(b)

4.4.4

4.4.5

4.4.6

4.4.7

4.4.8a

Page

Spanwise Variation of Time-Averaged Pressure Distributions on the Rotor.

(a) 2% Span;

(b) 25% Span;

(c) 75% Span;

(d) 98% Span ....................................................... 87

Pressure Amplitude Distribution on the Rotor at Midspan (Madavan et al.

(1989, 91) Computations) ............................................. 88

Stator Surface Flow Visualization. Time-Averaged Limiting Streamlines
From

(a) Single-Passage Computations; and

(b) Multi-Passage Computations.

(Madavan et al. (1991)) ............................................... 89

Rotor Surface Flow Visualization. Time-Averaged Limiting Streamlines
From

(a) Single-Passage Computations;

(b) Multi-Passage Computations; and

(c) Experimental Results.
(Madavan et al. (1991)) ............................................... 90

Relative Total Pressure Contours at the Exit to the Stator and the Rotor.

(a) Single-Passage Computations;
(b) Multi-Passage Computations; and

(c) Experimental Results.

(Madavan et al. (1989, 91) Computations) ............................... 91

A Radially Uniform Incoming'I_,vo-Dimensional Hot Streak Yields Higher

Surface Temperature on the Pressure Side and Lower Temperatures on the

Suction Side (Dorney et al. (1991)) Indicating Segregation of the Hot and
Cold Air in Turbine Rotors ............................................ 92

Relative Total Pressure at Exit of the Rotor from Both the Unsteady
Simulation and Experimental Data Indicate That the Unsteady Euler Code

(Ni & Sharma (1990)) is Sufficient to Predict Experimental Behavior ........ 93

Unsteady Two-Dimensional Computations for the UTRC LSRR Rotor

Indicating Unsteadiness in Static Pressure, Skin Friction and Losses.
Larger Effects Indicated Using Transitional Model Developed in the

Present Program ..................................................... 94

Computational Grid and Inlet Profiles Used in Simulating Steady and

Unsteady 3D Flows Through the UTRC Rotor ............................ 95

X



LIST OF ILLUSTRATIONS (Continued)

Hgure

4.4.8b

5.1.1

5.1.2

5.1.3

5.1.4

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

5.2.8

5.2.9

Page

A Comparison of Measured and Predicted Tune-Averaged Airfoil Surface

Static Pressure Coefficients for the UTRC LSRR Rotor Indicating Good

Agreement .......................................................... 96

Code Application - Railly's Impeller ................................... 97

Grid Used in the Simulation ........................................... 98

Code Application - Railly's Impeller (2D Steady Calculation) .............. 98

Code Application - Railly's Impeller (2D Steady Calculation) .............. 99

Numerical Simulations Conducted For The HP And HPFTP Turbines

(Griffin & Rowey (1993)) By Using _vo-Dimensional Unsteady Euler
And Navier-Stokes Codes Show:

I) Almost Identical Time-averaged Loadings; But

II) Smaller Unsteady Loads From The Euler Code Than Those From
The Navier-Stokes Code ............................................ 100

Schematics of the Two-Stage Turbine Rig Along With the Measurement
Locations .......................................................... 101

Computational Grid Used to Simulate Two-Dimensional Unsteady Flow

Through the First Rotor and Second Stator of the Rig .................... 102

Computational Grid Used to Simulate Three-Dimensional Steady and
Unsteady Flow Through the Multistage Two-Stage Rig by Using
the Euler Code ..................................................... 103

Computational Grid Used to Simulate Viscous Flow Through the Rotor

and the Suitor by Using an Unsteady Navier-Stokes Code ................ 104

Two-Dimensional Unsteady Flow Simulations Show Larger Levels of
Unsteadiness From The Navier-Stokes Code Than Those From The Euler

Code. Both Simulations, However, Do Not Accurately Model The Inlet
Condition To The Stator ............................................. 105

Three-Dimensional Steady Multistage Euler Code Yields Good

Agreement with the Airfoil Loading Data for the Rotor and the
Stator ............................................................. 106

Three-Dimensional Multistage Unsteady Elder Code Predicts Higher
Unsteadiness Than the 2D Code, But it Still Underestimates Unsteady

Pressure Amplitudes on the Airfoil Suction Side ......................... 106

Steady Loadings on the Rotor and the Second Stator Well Predictedby 2D

Steady Navier Stokes Code Modified to Account for "H-ratio" Effect ...... 107

xi



LIST OFILLUSTRATIONS(Continued)

5.2.11

5.2.12

5.2.13

Page

Envelope of Loadings on the Rotor and the Stator Predicted by Using 2D

Unsteady Navier-Stokes Code with "H-ratio" Modifications; Amplitudes

of Unsteady Pressures on the Airfoil Suction Side Fairly Well Predicted ..... 108

Two-Dimensional Unsteady Navier-Stokes Code Predicts Periodic
Variation in Loss for the Stator as it is Influenced by the Upstream

Rotor. Time-averaged Loss for the Stator is Almost 50% Larger Than

Calculated for this Airfoil in a Steady Flow Environment .................. 109

Measured Streamwise Distribution of Time-Averaged Boundary Layer

Momentum Loss Thickness (Hodson (1983)) Show Larger Values For

Rotors (Unsteady Environment) Than Those Measured For The Same
Airfoil Sections In a Steady Cascade Environment. The Rotor Data Are

Bracketed By The Transitional and Fully Turbulent Calculations

(Sharma et al. (1988)) ............................................... 109

Mid-Span Losses On The 2nd Stator As Influenced By The Unsteadiness

Generated By The Upstream Rotor Airfoil Wake ........................ 110

xii





SUMMARY

Development of a flow prediction method for rocket turbopumps is discussed in this report. A
detailed description is given of the complex nature of the flowfield existing in turbopumps. Examples
are given to illustrate that both physics based models and analytical calculation procedures based on
Computational Fluid Dynamics (CFD) have resulted in progressive advancements of design
procedures used in turbopumps. Limitations of the state-of-the-art design procedures are outlined
for which the present work was conducted to significantly enhance the design methodology.

A CFD code developed at NASAARC was used as the base code in the present work. In its initial
form the CFD code could compute unsteady turbulent flow through an axial flow turbine stage.
Governing equations and numerical procedure used in the CFD code is documented in detail. The
turbulence model in the code was modified to facilitate computation of transitional flows and to
account for extra rates of strain, such as rotation, three- dimensionality, surface curvature and surface
roughness. Boundary conditions in the code were modified to facilitate computation of surface heat
transfer coefficients and to allow computation through multistage turbomachines. The code was
modified to permit simulations of flow through airfoil rows with towpath convergence and divergence
and to include radial flow turbomachines.

Extensive work was conducted to demonstrate that the CFD code yields good estimates of airfoil
Ioadings, heat transfer coefficients, boundary layer parameters, losses, endwall secondary flows and
tip leakage flows. Benchmark quality data, obtained from two- and three-dimensional cascades, are
used in the code verification process. The ability of the base code to compute time-averaged and
unsteady flow through a turbine stage had been previously demonstrated by the originator of the code
at NASA ARC. Additional computations were conducted by NASA ARC personnel concurrent to the
present program to demonstrate that the unsteady and time-averaged flow prediction capabilities
of the code could be improved by utilizing more refined grids and by accounting for a more realistic
airfoil count in axial flow turbines. To avoid duplication of work and to build on the enhanced strength
of the code, work was conducted to demonstrate that the present code yields a more realistic estimate
of unsteady loads in turbines than unsteady Euler codes; the latter codes are currently being used in
the design procedures for rocket turbopumps.

Computations were conducted to demonstrate that the modified code with improved turbulence
models, developed in the present program, yields realistic estimates of unsteady and time-averaged
losses in multi-stage turbomachines. Work conducted in the present program and other simulations
conducted by the authors during the program period indicated that the present code, operated in a
two-dimensional mode (but modified to account for stream-tube variation effects), is a cost
effective alternative to full three-dimensional calculations. This approach permits realistic
predictions of unsteady loadings and losses for multistage machines, allowing design engineers more
time for design optimization studies. The predictive capabilities of the present code were
demonstrated by computing flow through a radial impeller and a multistage axial flow turbine.

The work conducted in the present program was supported by NASA MSFC Contract
#NASS- 36950.



1. INTRODUCTION

Turbopumps for future rocket engines will require operating lives and performance levels well

above those of present day units. Due to the very hostile environment that exists during the actual

operation of a turbopump, reliable data that would permit identification of specific problems and thus

guide future designs, is extremely difficult to obtain. In recognition of this situation, NASA has

sponsored Computational Fluid Dynamics (CFD) computer code development programs which,
when verified against basic data, may be used to identify ways to improve the current turbopumps and

provide a basic understanding of the flow phenomena which could lead to better designs of future

mrbopumps for rocket engine applications. This report presents results from one of these programs,

funded by NASA MSFC under contract # NAS8-36950 on the development, modification,

verification and application of a CFD code for turbopump design application.
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2. BACKGROUND

Althoughrealflowsin rocketturbopumpsarehighly unsteady, steady flow calculation methods
are used during the design process. The unsteadiness is induced by the temporal and spatial variation

of inlet temperatures and by aerodynamic interaction between rotating and stationary components.

In the design process the effects of unsteadiness, at best, are accounted for through empirical

correlations derived from available experimental data. Lack of physics in these empirical correlations

invariably yield non-optimal designs requiring extensive efforts which add time and cost to the
development process. Examples are given below to demonstrate that in addition to the fluctuations

in the aerodynamic loads, unsteadiness affects time averaged losses and heat loads which must be

accounted for in the design process.

The interaction which occurs in the SSME turbopump between the rotating pump impeller and
the stator diffuser vane and also in the pump turbine between the rotor and the stator can generate

unsteady forces through various mechanisms which occur at widely different time and length scales.

Some of these mechanisms are summarized below (Greitzer (1987))

Types of Unsteady Flow Extent Typical Time Scale {see)

Unsteadiness Due to:

i) Potential field interaction due to chord 5 X 10 -5 see
relative motion of airfoils

ii) Wakes chord 5 X 10 -5 see

iii) Large scale vortical organized
flow structures

chord/span 5 X 10 -5 see

iv) Temperature distortions gap/span 5 X 10 -5 see

v) Turbulence chord

vi) Rotating stall circumference 5 X 10 -1 see

vii) Surge length 5 X 10 -1 see

Typical row assumed to have 60 airfoils at gap/chord of one and operating at 36000 RPM

These mechanisms are governed by different types of fluid dynamic phenomena. In order for any

CFD code to capture these unsteady interactions, the responsible fluid dynamic phenomena tabulated

above must be accurately modeled. A brief discussion on each of these phenomena, except rotating

stall and surge, is given below. Rotating stall and surge typically occur in high pressure ratio
compressors, and they may not contribute to the unsteadiness prevalent in the SSME turbopump.

Unsteadiness due to turbulence is primarily embedded in the unsteadiness generated by wakes and

large scale vortical organized structures; however, at the first rowof airfoils, it can primarily be treated

as a steady-state phenomenon using turbulence models in Reynolds-Averaged Navier-Stokes
codes.



2.1 PotentialFlowfieldInteraction

Thepotentialflowfield interactionin theturbopumpcomponentsarisesbecausethevaneor the
impeller is subjectto a time-varying pressure field influence resulting from relative movement of

adjacent airfoil rows. This time-varying force has a time scale on the order of the blade passing

frequency and could cause structural fatigue in and of itself. In addition, the time-varying pressure

field is capable of creating a transient flow disturbance, such as separation, in the vane or impeller

passage; a possible interactive feedback mechanism could sustain or amplify the unfavorable

interaction between the rotating and stationary components.

The potential interaction induced by relative motion of the adjacent airfoil rows is shown in
Figure 2.1.1. This figure indicates that the pressure field (waves) due to the potential around an airfoil

row extends both upstream and downstream of the airfoil. "l_pically the strength of the field decays

over a length scale equal to the pitch/chord of the cascade. Unsteadiness effects due to relative motion

of the pressure field, in both the upstream and the downstream rows increases with decreasing axial

distance between adjacent rows.

Vane Blade

t Blade
Motion

TypicalVane/BladeA_dalSpacing StaticPressureContours

F'gure 21.I Potential Flow Pressure Gradient&

The magnitude of loading variation for a turbine stator and rotor at mean radius as measured

in the United Technologies Research Center (UTRC) Large Scale Rotating Rig (LSRR) by Dring et

al. (1982) is illustrated in Figure 2.1.2. The unsteady pressure variation on the stator caused by the

upstream potential influence of the downstream rotor was as much as 15% of the steady stator exit
dynamic pressure (Figure 2.1.2(a)). The pressure variations on the downstream rotor were measured
when it was located at 15% axial chord downstream of the suitor. The amplitudes of the pressure

signals for the rotor were of the order of 80% of the relative steady state dynamic pressure, Data were

also acquired when the gap between the upstream stator and downstream rotor was of the order of

60% chord of the upstream stator. The amplitudes of the unsteady pressure signals on the rotor at

higher axial gap condition were measured to be about one-half those at the lower axial gap. The
difference in the unsteady pressure amplitude on the rotor for the two axial gaps indicates a decay rate

of pressure amplitude with distance which is far less than the rate of decay of potential influence. This

implies that a large portion of the unsteadiness in pressure on the downstream rotor airfoil is due to
wakes from the upstream rotor. A discussion on the physics of wakes as it affects downstream airfoil

rows is given in the following subsection.
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Figure21.2 Range of Instantaneous Pressure Distributions Measured in the

United Technologies Research Center Large Scale Rotating Rig
(UTRC LSRR) on Stator and Rotor Airfoils.

The impact of potential flow interaction in a turbopump was numerically demonstrated by

Rangwala et al. (1991) for the Generic Gas Generator ((33) turbine. Calculations were conducted for
the mean section of the (33 turbine first stage, for three axial gaps between the first stator and the rotor,

by using a two dimensional (2I)) unsteady Navier-Stokes code. Results from these calculations

(Fig.2.1.3) clearly show that time-averaged diffusion on the upstream stator is a function of the axial

gap between the vane and the blade. The upstream vane is, therefore, affected by the downstream

blade through the potential effect. The above calculations also showed that the turbine efficiency
could be improved by up to 1% by operating the turbine at the larger gap. Although experimental data

verifying these numerical results are not yet available, indications are that there is an optimum gap

between adjacent airfoil rows.

W l.0

a.

i
i
Y

0.4

0.0 Normallzed P_al _siance

VANE BLADE ........... SMALL GAP
MEDIUM GAP

1.0q b+_ _.__ LARGE GAP

i
j
_ 0.4 'I

1.0 0.0 Normalized Axial D/stance 'I.0

Figure 2.1.3 Simulations (Rangwala et aL (1991)) Conducted for a

Turbine Stage by Using a 219 Unsteady Navier-Stokes
Code Show That T_ne-Averaged Di.Oksion on the

Upstream Vane is Influenced by the Axial Gap Between
the Vane and the Rotor.



2.2 Wake & Temperature Streak Interaction

The circumferential variations in the velocity field downstream of the first stators for turbines
are normally generated by the drag on the airfoil and endwall surfaces which causes a reduction in

velocity and increases in the turbulence levels in the low velocity regions. In some flow situations,
espe_ally for airfoil rows downstream of a combustor, high velocity jets exist due to large

circumferential gradients in temperatures. The effects of these upstream velocity variations can be

simply illustrated through the use of velocity triangles (Butler et al. (1986)), as shown in Figure 2.2.1

for a turbine. This figure shows that the lower velocity fluid has a normal velocity component towards
the suction side of the downstream airfoil indicating that the high turbulence, low momentum fluid

from the upstream airfoil wake will migrate towards the suction side of the airfoil. In a similar manner,

high velocity (high temperature) fluid will migrate towards the pressure side of the downstream
airfoil. This preferential migration of fluid particles has three effects:

i) Alterations in the boundary layer characteristics of the airfoil through its effect on the

transition process.

ii) Variation in the secondary flow generation for downstream passages.

iii) Redistribution of stagnation enthalpy.

LOW FLOW CO-EFFICIENT HIGH FLOW CO-EFFICIENT

A:rcM TOel AXIA. VEUDCITY

* Wt4EEI. gPEI_

w mTNE VI_OCIlrY
v A4_LUlll vlLocn,t,
u IblqEL IIPRD

F'gure 221 Rotor Inlet Gas Temperature Distortion Causes Lwge

Variation in Rotor Airfoil Incidence Angle. Simple

Calculations Conducted for Hot to Cold Temperature
Ratio of 1. 7 Indicates Incidence Angle Variation o)'12"

and 40" for Typical High and Low Flow Coefficient.
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2.2.1 Effect of Upstream Wakes on Losses and Heat Loads

Detailed experimental investigations (Hodson (1983), Pfeil & Herbst (1979) Doorley &

Oldfield (1984), Dring et al. (1982)) have been conducted to identify the influence of upstream
periodic wakes on boundary layer characteristics. The characteristic of boundary layers on airfoil

suction sides, affected by periodic movement of the upstream wakes, was dearly illustrated by Doorley

& Oldfield (1984). Time resolved heat transfer data were acquired in this investigation in a stationary

cascade at a low and a high background turbulence level with and without an upstream rotating rod

that simulated wakes from upstream airfoils• These data, plotted in Figure 2.2.2(a), indicate that

upstream wakes have relatively little effect on turbulent boundary layers and significant effects on

laminar boundary layers. This figure shows that time-averaged heat transfer and losses for turbine
airfoils, which normally have large regions of laminar flow in a steady flow environment, are expected

to increase in an unsteady environment.

WIIHOU'r _|_S

_T
e

I wfr. kqrrlL_Nrr_

_ 1L ,wUvf_ _/V'ff 1

I T.dE #
I

---,- 'rlmAE

DATA WITH LOW iNLET TURBULENCE LEVELS

DATA WITH HIGH INLET TURBULENCE LEVELS

Figure 212(a) Measured Tune-Resolved Heat Transfer on a Turbine Airfoil

Suction Side (Doorly et 02 (1984)) at Two Background

Turbulence Levels in an Unsteady Environment Shows a Larger

Effect on a Laminar Boundary Layer and Little Effect on a
Turbulent Boundary Layer.

The time-averaged effect of upstream wakes on the boundary layer thickness and heat transfer

coefficient for the suction sides of two separate rotor airfoils (Hodson (1983), Blair et al. (1988),

Sharma et al. (1988)) are shown in Figure 2.2.2(b). Also shown in this figure are the data obtained for
those airfoils in steady cascade configurations and calculated values from a boundary layer code. The

steady cascade data are shown to yield good agreement with transitional calculations. The

time-averaged data, however, lies between the transitional and fully-turbulent calculations. This

figure indicates that the nature of transition is influenced by the periodic variation of turbulence
imposed by wakes from upstream airfoil rows. In addition, losses and heat loads in an unsteady

environment are larger than those measured in steady cascade configurations. For typical turbine

airfoils, losses induced by unsteady effects may be on the order of 25% to 100% of the losses for those

airfoils in a steady flow environment (Sharma et al. (1988)).
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2.2.2 Effect of Upstream Wakes on Secondary Flows

In addition to affecting the characteristics of airfoil boundary layers, wakes from upstream airfoil

rows also affect the generation of secondary flows (Sharma ¢t al. (1983,88,90) as discussed below.

Unsteady experimental data for a rotor passage, obtained by using high response probes in the

UTRC LSRR (Sharma et al. (1983)) are shown in Figure 2.2.3. This figure shows three instantaneous
contour plots of relative total pressure coefficient upstream and downstream of the rotor passage.

Large variations in the exit flow structures are seen in the figure for the three different inlet conditions.

The exit flow field (Figure 2.2.3(a)) shows three distinct vortices due to the hub and tip secondary flows

and the tip leakage effects. Without the tip leakage vortex, the flow field shown in Figure 2.2.3(a) is
similar to the one expected for this airfoil in a steady cascade environment. The tip leakage vortex for

the rotor shows least variation (Figures 2.2.3(a), (b), and (e)) indicating that the leakage phenomenon

is not influenced by upstream circumferential distortions. The hub secondary flow vortex shows the

largest variation transforming from a distinct structure in Figure 2.2.3(a) to a diffused structure in

Figure 2.2.3(b), and becoming almost non-existent in Figure 2.2.3(0. This indicates that the
secondary flow generation mechanisms, especially at the hub, are strongly influenced by the upstream
circumferential distortions such as wakes. The overall variation in the size of the tip secondary flow

vortex is smaller than that of the hub vortex but larger than the leakage vortex.

8
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Secondary Flow Structures Downstream of a Rotor (Sharma et at (1988))
Obtained From Unsteady Measurements Show Large Variation in Their

Size, Indicating Effects of Upstream Stator Wakei

The periodic variation in the size and strength of the secondary flow vortices observed in this
experimental investigation shows almost 40% variation in the secondary flow losses for the rotor

passage.

2.2.3 Effects of Upstream Temperature Streaks on Segregation of Hot and Cold Air in
Turbine Rotors

Results from an experimental investigation, conducted to quantify the influence of burner
induced hot streaks on segregation of hot and cold air in turbine rotors, are discussed below.

In this investigation, experimental data were acquired in the UTRC LSRR by introducing

temperature streaks upstream of the first stator (Figure 2.2.4(a)). Two types of temperature profiles

were generated upstream of the first stator, these being:
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F_ 224(a) Schematics of the Erpetimental Apparatus Used

to Simulate the Redistribution of Hot Streak in

the T_rbine Rotor (Butler et aL (1986)).

i) Hot streak with a circular cross-section to yield a temperature profile both in the radial and
the circumferential direction, some of the results from this investigation were reported by

Butler et al. (1986).

ii) Hot streak with a rectangular cross-section to yield a radially uniform profile that had

temperature gradients mainly in the circumferential direction (Sharma et al. (1990)).

The hot air in these experiments was seeded with Carbon Dioxide (C02) to facilitate

measurements of its migration in the turbine by using a gas sampling technique. The temperature
patterns at the exit of the first stator for these tests are given in Figure 2.2.4(b) which indicates

relatively small mi_ng in the first stator. This result is expected being compatible with the Munk and

Prim (1947) principle. Spanwise distributions of axisymmetric CO2 concentration profiles at inlet to

the rotor,measured by using a rotating probe,for these two tests are given in Figure 2.2.4(c). The

circular streak generate a parabolic concentration (temperature) profile, whereas the rectangular
streak generated a radially uniform profile.

F_u_.e 22 4(b) Contour Plots of Normalized C02 Concentration

Downstream of the First Stator in the UTRC LSRR
Obtained with Circular and Rectangular Hot Streaks;

High Values Imply High Temperatutr_
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Figure 2 2 4(c) Spanwise Distribution of Normalized C02 Concentration

Pro.files (Indicators of Temperatures) Measured in the Rotor

Frame for the Circular and Rectangular Hot Streaks.

Measured concentration of CO2 on the rotor airfoil surfaces,for the rectangular hot streak, are

shown in Figure 2.2.5. This figure indicates higher levels of CO2 concentration on the rotor airfoil
pressure side than on the suction side. Similar results were obtained with the circular hot streak as

discussed by Butler et al. (1986). These results demonstrate that pressure sides of rotor airfoils
operate at substantially higher temperatures than the suction sides when the incoming flow has a

circumfcrentially non-uniform temperature profile.

TIP

HUB

TE SUCTION SIDE LE PRESSURE SIDE TE

Figure 2 2 5 Larger Tune-Averaged C02 Concentration (Temperatures)

Measured on the Pressure Side of the Rotor Airfoil Relative to

the Suction Side Indicate Segregation of Hot and Cold Air.

Interpretation of data obtained from an aircraft engine environment indicates that the pressure
sides of first rotor airfoils in a high pressure turbine can operate anywhere between
100-700" F hotter than suction sides. These temperature differences between the two sides of airfoils
can cause significant durability problems for airfoils. Large amounts of cooling air are required to
accommodate these temperature levels resulting in reduced efficiency of the cycle and increased
specific fuel consumption of aircraft engines.
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2.3 Interaction Due to Large Scale Organized Vortical Flow Structures

The real flow in the turbopump turbines consists of large scale organized flow structures formed

byviscous flows in large deflection airfoil rows. Although these flow structures may affect the unsteady
flow fields in turbines more than either the potential or wake interaction, this phenomenon has not

been discussed in the open literature until recentiy by $harma et al. (1988,1990). Shortage of available

data and complexity of the problem it introduces in the analytical treatment have contributed to this

gap. "Ihrbine cascade flow visualization experiments conducted in a water tunnel at University of

Connecticut illustrate the organized structures formed in a simple configuration as shown in Figure
2.3.1. The flow structures formed in the cascade were visualized by utilizing hydrogen bubbles and

laser lighting techniques. The deformation of two parallel horizontal lines of bubbles at the inlet and
exit planes of the cascade is shown in the above figure. This figure clearly shows how the fluid particles
contained between the two lines deform into vortical structures constituting almost 2.5% of the total

airfoil passage. In a three dimensional unsteady flow field, these vortices should have a large influence

on turbine performance, durability and structural integrity.

SY, EXIT PLANE IS",.

S'L SPAN INLET PLANE 1SIL SPAN

z3.1 Two Parallel Horizontal Lines Upstream of the Cascade Distort

Into Vortical Structures at the Leading and Trailing Edges of the

Cascade. Flow Visualization Tests Conducted at U. of Connecticut

by Prau & Whitney.
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The formation and development of these vortices in turbine cascade passages were extensively

investigated at LrFRC (Langston et al. (1977)) in a large scale cascade rig where detailed aerodynamic
performance, loadings and external heat loads were measured. The effect of these flow structures on

the airfoil loading is shown in Figure 2.3.2; data were obtained on the cascade airfoil for three different
inlet boundary layer profiles resulting in three different magnitudes of secondary flow vortices. Large

spanwise gradients in airfoil loadings are generated with an increase in the incoming boundary layer

thickness. This also results in an increase of the size of the vortex. The variation in the pitch averaged

gas angle profile at the exit of the cascade increases from 5 to 25 degrees for the two extreme inlet

profiles. Since these angle variations are introduced by vortical motions, they would cause similar

variation in the circumferential direction, thus causing unsteady incidence variation on the following

row of airfoils. The circumferential distortions introduced by these vortices are two to three times
larger than those introduced by 2D wakes.

Velocity p_rdes
(_) into airfoil
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Figure 23.2 Change inAirfoU Loadings and Exit Gas Angles asAffected by Cascade

Inlet Boundary Layers Langston's Data (Langston et al (1977),

Sharrna et aL (1990)).
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Figure 2 3. 2 Measured Streamline Patterns on the Airfoil Suction Side Indicating
the Change in the Size of Secondary Flow Vortices Due to Inlet

Boundary Layer.

In addition to loading and exit angle variations the presence of secondary flow vortices also
causes substantial effects on airfoil external heat loads as shown in Figure 2.3.3. This figure shows

measured heat transfer coefficients on the midspan of the airfoil for thin and nominal inlet boundary

layers; two different magnitudes of secondary flow vortices are represented. Although the airfoil

loading at the midspan region for the two test conditions is the same, the heat load for the cascade

with the larger secondary flow vortex is lower by 70%, indicating that the vortex causes substantial
alterations to the structure of turbulence (Sharma & Grazianl (1982)). The physical mechanisms

governing the generation of secondary flow structures in steady cascade flows are well established

(Langston et al. (1977) and Sharma & Buffer (1986)), as depicted in Figure 2.3.4. The mechanisms
governing the generation, development and transport of these vortices in unsteady turbomachinery

environments, however, still require further work, especially from a predictive point of view.

Extensive unsteady data acquired in the UTRC LSRR highlight important features of the secondary

flow generation in the multistage turbine environment. These features have important implications
on the development of analytical predictive models.
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(1982)). Midspan Loadings in the Two Tests are the Same.

Inklt beuadlwy

.7-- i- / / _ ,.gho,,o,ho.

Figure Z3.4 Cascade Endwall Flow Structure (Sharma & Butler (1986) )

An example of large scale structures from the rotor influencing the flows in downstream stator

airfoil rows is given in Figure 2.3.5. This figure shows the total pressure field downstream of a second
stator which represents variations in the fiowfield as one full rotor passage translates over one full

second stator passage. The structures of the wakes and vortices of the second stator are only slightly

affected by the upstream flow distortions, in contrast to information in Figure 2.2.3. Here, upstream

flow distortions strongly influences the flow structure downstream of the rotor. A possible
interpretation of the data shown in Figures 2.2.3 and 2.3.5 is that the effect of upstream flow

distortions is enhanced by the rotation effects. The mid-passage flow region of the second stator,

however, is strongly influenced by the upstream flow distortions. At certain time locations the vortices

from the upstream rotor appear downstream of the second stator, completely unaffected by the stator.
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Although these vortices contain fluid with large magnitudes of turbulence intensity and stresses, they
show little evidence of mixing and thus indicate that these would have a large impact on the mid-span
flow field of the second stator.

Ul_Rem Rx_aer
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F'tgure 23.5 UnsteadyInstantaneousTotalPressureLoss CoefficientDownstream of

theSecond StatorIndicatethatRotorSecondaryFlow VonicePeriodically

PersistThrough theSecond Stator(Shatma and Syed (1991)).

Measured time averaged heat transfer data obtained at the midspan location of this airfoil is

shown in Figure 2.3.6, together with theoretical predictions that were based on measured midspan
airfoil ioadings. The streamwise gradients of the measured and predicted heat transfer coefficients

on the airfoil suction side differ from each other in the turbulent region; influence of the secondary

flow vortices convecting through the midspan region of the stator on the airfoil boundary layer is

apparent.
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23o6 Analytical Predictions Underestimate External Heat Load on the

Second Stator Airfoil Suction Surface for Blair et aL (1989) tes_

This Result is Opposite to the Experiments and Predictions in
Steady Cascade Con_,urations in F_,ure 222(b) and 23.3.

The discussion presented in this section clearly demonstrates that large scale organized

structures constitute a significant portion of the overall flow field in multistage turbomachines. The

incidence angles and unsteadiness induced by these structures are larger than those induced by wakes
and potential interactions for typical rocket turbines. No model or discussion of the existence of these

flow structures and their influence on the unsteady flow field have appeared in literature, indicating

the complexity of the problem and infancy of the models. The development of a reliable prediction

method, such as that discussed in the present program, will provide a valuable tool to turbopump

designers, permitting optimization of the turbopump for improved durability, structural integrity and
performance.

In summary, unsteadiness effects in turbomachinery are caused not on/y by potential flow and
two dimensional wake interactions but also by large scale organized structure and temperature

distortions. Of these phenomena, large scale organized structures have been given little attention in

the overall turbomachinery design and analysis procedures. These structures can cause higher

unsteadiness in the airfoil rows than either potential flows or wakes.

A review of the hierarchy of CFD codes used in the turbomachinery design and analyses modes

is given in the following subsection, indicating how the work conducted under the present program

permits improved analysis of turbopump flowfields to yield designs which are more efficient, durable

and structurally sound.
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2..4 Applicationof CFDCodesin Turbomachinery

Significantimprovementsin durability,structuralintegrityandperformanceof turbomachincs
havebeenrealizedover thepasttwentyyears.Oneof the major contributors to these achievements

has been the successful close coupling of analytical models describing the salient physical mechanism

with state-of-the-art Computational Fluid Dynamics (CFD) codes. A brief review of the design

process evolution with special emphasis on the use of CFD codes is given in the following subsection

and schematically depicted in Figure 2.4.1. This will highlight how the work conducted under the

present program has contributed to the enhancement of the current design process which will lead to
improvements in durability, structural integrity and performance of rocket engine turbopump units.

I
• I I I I I I I,

F_tre 2 41 Application of Computational Fluid Dynamics Codes Have _ed in

Improved Performance. Further Performance Improvements Are

Possible With Unsteady Code Application.t

2.4.1 State-of-the-Art

The actual flow fields in turbomachines are highly complex. They consist of laminar, transitional

and turbulent boundary layers on airfoil surfaces and secondary flow vortices in the endwall regions.

These vortices are formed by the incoming total pressure distortions in endwall boundary layers and

tip leakage flows. These complex flow patterns are strongly influenced by three-dimensional

pressure fields within the airfoil channels and relative movement of adjacent airfoils rows, as well as

incoming time varying temperature patterns. The resultant flow field exhibits strongly viscous and

highly time dependent characteristics, which necessarily create in transient thermal and aerodynamic
loads on airfoil surfaces.

In the early stages of turbomachinery design, before the advent of sophisticated computer

systems, engineers relied on one-dimensional concepts and simple correlations derived from
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extensiveexperimentaldata to accountfor lossgenerationmechanisms.Thesecorrelations,albeit
relativelycrude,accountedfor thevariousflow field characteristics in a global sense and allowed

engineers to generate consistent designs. A large volume of data acquired during the process of

turbomachinery development was used to establish design criteria for airfoil loadings and radial

distribution of flow, as shown in Figure 2.4.2. This one-dimensional approach to turbomachinery

design often resulted in expensive and time-consuming product development.

-- PoooRMel
_Jn- . .'_/_] IloplorsO4m

t _" _,,"" f I

po %

! s'

SURFACE DISTANCE SURFACE DISTANCE

FiRure 24.2 Low Loss Airfoil Design Criteria Established Through Extensive

Data Base Review. No Leading Edge Diffusion, Large Acceleration
Regions, Small Diffusion Regions.

2.4.2 First Generation of CFD Code for Turbomachinery

With the availability of computers in the mid 1960's, CFD codes were developed to assist in the

turbomachinery design process. The first generation of CFD codes used in the design solved

two-dimensional equations both in the blade-to-blade (Caspar et al. (1979), Denton (1975) Ni

(1982)) and the radial direction (Novak & Hearsay (1976)). Initially, these codes were used to analyze

flowfield to ensure that the design intention was achieved with reduced hardware testing. Two
dimensional boundary layer codes were subsequently developed (Crawford & Kays (1976),

McDonald & Fish (1972), Patankar & Spalding (1970) that permitted external heat load and

aerodynamic loss calculations. Benchmark quality experiments (Blair & Werle (1980,81), Blair

(1982), Sharma et ai. (1982)), identifying the basic physics of boundary layers for typical turbine
airfoils, were also conducted to develop improved turbulence models needed for the boundary layer
codes.

An example of results from these experiments is shown in Figure 2.4.3, where the effect of
mainstream pressure gradient on transitional boundary layers is quantified. A simple algebraic

turbulence model developed on the basis of these data yielded a much better estimate of the external

heat loads on turbine airfoils than the more complex K-E turbulence models shown in Figure 2.4.4.

The 2D inviscid and boundary layer codes can then be utilized to optimize shape of an airfoil during

design, as shown in Figure 2.4.5.
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Figure 24.5 2-D Viscous and Inviscid Codes Used to Optimize

Shapes of Airfoil for Improved Performance.

The use of boundary layer calculation methods and basic experimental data also allow

qualitative estimates of the effect of unsteadiness on turbine airfoil boundary layer development.

Several specific experiments (Dring et al. (1982), Pfeil and his co-workers (1979,82), Hodson (1983),

Sharma et al. (1983,88,90), Langston et al. (1977), Joslyn et al. (1982)) contributed to the development

of the unsteady loss prediction models. Results from one of these experiments shown in Figure 2.4.6
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indicates that the time averaged loss on the airfoil in an unsteady environment is substantially higher

than it would be for the same airfoil in a steady environment. In addition, the minimum and maximum

losses in this experiment show good agreement with calculated results by utilizing transitional and
fully turbulent boundary layer prediction models. The increase in time averaged loss can be related

to reduced frequency (Schultz (1977), Sharma et al. (1988)) as shown in Figure 2.4.7. Quasi-steady

models developed on the basis of these results yield excellent agreements with the steady and unsteady

time averaged boundary layer data from Hodson (1983) and Pfeil & Herbst (1979) as indicated in
Figure 2.4.8. It should be emphasized that a relatively simple model can yield good predictions for the

effect of unsteadiness on airfoil boundary layers once the primary physical phenomenon has been

identified through review of basic experimental data.
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The stable of 2D CFD codes for turbomachinery design application were completed with the
development of 2D Navier-Stokes code (Davis et al. (1986)). This code permits realistic simulation

of airfoil performance at off-design conditions where foil separation effects become important. An

example of the application of this code to estimate loading distribution on an airfoil is shown in Figure

2.4.9 where the airfoil has a separation bubble on the airfoil pressure side. The Navier-Stokes code

yields better agreement with experimental data than a 2D Euler flow solver because it simulates the
effect of the separation bubble explicitly. It should be pointed out, however, that a good transition

model is essential if good estimates of airfoil Ioadings are to be realized.
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Figure2.4.9 2-19 Navier-Stokes Code With Improved Transition Model Shows
Separation Bubble on Airfoil Pressure Side and Predicts its Effect on

Airfoil Loading.
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2.4.3 SecondGenerationof CFDcodesfor Tarbomachinery

Three-dimensionalEuler codes(Ni et al. (1989), Denton (1975)) and Navier-Stokes codes

(Hall (1983), Rifle (1986)) represent the second generation of CFD codes utilized in the

turbomachinery design process. Application of these codes represents the state-of-the-art in

turbine design and analysis systems. Availability of 3D CFD codes to analyze flow through turbine

airfoil rows has greatly enhanced the capabilities of the design engineer. In addition to providing the

ability to compute flow through complex 3D geometries, these codes also permit calculation of

secondary flows in turbine airfoil rows and thus provide a vehicle to control these flows; this can result

in significant improvement in performance and durability of turbines.

The secondary flow prediction capability of the 3D CFD codes is demonstrated in Figure 2.4.10

where experimental data from Langston's Cascade (1977) are compared to theoretical predictions by

utilizing both a Navier-Stokes code (Rhie (1986)) and an Euler code (Ni et al. (1989)). Both codes,
run with measured inlet flow profiles, show good agreement with data in terms of airfoil loadings and

surface streamline patterns, indicating the effects of secondary flows. The Navier-Stokes code was
expected to yield good predictions for the three-dimensional flows since it solves viscous flow

equations. Realistic predictions obtained by using an inviseid Euler code were, however, surprising

because secondary flow behavior was expected to be induced by viscous effects not modeled by the
code. Further investigations suggested that good agreement between data and predictions due to 3D

codes was mainly influenced by the use of measured upstream flow profiles; the predicted magnitude
of secondary flows changed dramatically as the upstream profile changed in both codes. Specification

of upstream boundary condition thus becomes an important variable in the turbomachinery design

and analysis process.

Figure 24.10(a) Both 3-D Euler and 3-D Navier- Stokes Code I teld Good

Agreement with Langston's Cascade Data.
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Current turbines have closely spaced rows of airfoils. To analyze the flow through an airfoil row
inside a multistage turbine, one must specify the boundary condition for that row which is difficult to

obtain. To overcome this difficulty, multistage Euler codes have been developed (Ni et al. (1990) In

these codes the flow downstream of each airfoil row is averaged at the interface plane (Figure 2.4.11)

before information is transferred from an upstream to the downstream row during each solution

iteration. All interstage boundary conditions are thus automatically provided by the code. Theoretical

predictions from this code are compared against data measured in a two-stage turbine. Good

agreement between data and predictions confirms the validity of the model. The measured airfoil
loadings for the same experiment are compared to predictions in Figure 2.4.12. Once again, excellent

agreement is shown between the measured data and theoretical predictions. These multistage codes
are routinely used in the design and analysis of the aircraft and SSME turbines.
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F_,ure 24.12 Three-Dimensional Multi-Stage Euler Code Gives Good Estimates

of Ttme-Averaged Loading for Airfoils in Unsteady Environment.

The multistage calculation of Ni et al. (1989) described above facilitates steady state interaction

between airfoil rows and provides good estimates of airfoil loadings, flow distributions and gap

averaged total pressure and total temperature fields.
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2,4.4 FutureDirection

The 3DCFD codesdescribedin theprevioussubsectionprovidenecessary tools for designers

to optimize turbomachines under "mean" (steady) flow conditions. However, as pointed out earlier,
the actual flow fields in turbomachines are highly complex and unsteady. The airfoils undergo

transient and periodic aerodynamic loads which affect life and performance. In order to further

improve the durability and efficiency of the machine, more advanced flow prediction codes need to

be developed.

TWo specific aspects of the turbomachinery flow fields need further development: improved
predictions of the viscous flow effects and a realistic account of the effects of unsteadiness.

The viscous flows in turbomachines are dominated by complex boundary layers having laminar,

transitional and turbulent flow regimes. There are currently no methods available that can predict the
breakdown of laminar flows into transitional, and subsequently turbulent flows without utilizing

empiricism. Development of models that can account for mixing induced by turbulent flows from first

principles, although highly desirable, is beyond the scope of the present program. Even if such a

method could be developed, it would predict a flow structure similar to that shown in Figure 2.4.13(a)

which shows a flow field downstream of the rotor in the absence of upstream distortions. The real flow

in the rotor is influenced by wakes and vortices from the upstream stator airfoils (Figure 2.4.13(b)).

The overall flow structure in Figure 2.4.13(b) is totally different from that in Figure 2.4.13(a),
indicating that the effect of unsteadiness is more pronounced than the effect of viscosity. Further

improvements in the turbomachinery flow field analysis are thus likely to come from unsteady flow
analyses.

Tip Leakage | 28 Vanes

Vortex f
TIp Secondaryl

Vortex _ _.

Root Secondary_

Vortex / __

Potential Flow \.

!

Figure 2 4.13(a) Rotor Exit Flow Total Pressure Loss Contours in the Absence of Upstream

Wakes Show Distinct Organized Structures Similar to the Ones Measured

in CascadeA A 3-D Steady Navier-Stokes Code With Best Turbulence

Model Can Only Reproduce These Flow Structures
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2$ Vanes

F'gure 2.4.13(b) Rotor Exit Flow Total Pressure Contours As They Are Influenced
By Wakes From Upstream Stator Row Airfoil Show Large Pulsation
in the Organized Flow Structure. To Predict These Flow_ Viscous
Unsteady 3-D Code is Required.

Progress in computing three-dimensional unsteady flows has been reported by Rai (1987,89)
where an innovative numerical scheme and a supercomputer (CRAY-XMP) were utilized to
calculate three-dimensional viscous unsteady flows through a large scale model turbine. Some of his
results are shown in Figure 2.4.14. Although the computational resources required for this exercise
are large, Rai demonstrated that unsteady turbomachinery flow calculations are within the grasp of
turbomachinery designers. Even though the geometry was simplified by assuming the same number
of rotor and stator airfoil counts, the computation took 100 CPU hours on the CRAY-XMP
computer. It is estimated, however, that a realistic case would require 1250 hours of CPU on the
CRAY- XMP computer. Such requirements are not practical during a normal turbomachinery design
process. In order to reduce these requirements, "smart" use of CFD codes must be adopted. Using
the same approach as in the previous phases of the design system development, physical models,
representing salient features of the flow field physics, must be developed from experiments. These
models can then be incorporated into the unsteady, 3D viscous flow solvers, thus achieving improved
accuracy with much reduced computational costs.
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AirfoilsRespectively.

Work conducted in the present program has been a step towards developing the third generation

of CFD code application in the turbomachinery design process. The development and verification of

a 3D unsteady viscous flow solver in a turbomachinery environment is essential before information

from these codes can be utilized to improve durability, structural integrity and performance of rocket

engine turbopumps. Theoretical treatment including a system of equations, boundary conditions and
turbulence modeling used in the CFD code development is discussed in Section 3. Verification of the

code against benchmark quality data is discussed in Section 4. The verified code is applied to two

configurations to provide accurate estimates of flows in radial and axial machines in Section 5.
Conclusions and recommendations for future work are discussed in Section 6.
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3. THEORETICAL ANALYSIS

The CFD code used in the present program was originally developed by Rai (1987, 89) to
simulate unsteady two- and three-dimensional viscous flows through a turbine stage. Detailed

discussions of the governing equations, integration procedure, turbulence model and boundary

conditions are given by Rai and Dorney et al. (1992) and are reproduced here for the sake of

completeness of documentation. Modifications to turbulence models and boundary conditions

developed under the present program are also discussed.

3.1 Governing Equations

The code is based on numerical solution of the time dependent, three-dimensional, Reynolds

averaged Navier-Stokes equations. These equations can be written in Cartesian coordinates as:

Q, + (F, +F,). + (c, + c.), + (x, +R.). = o (3.1.1)

where

Q

Ow
et

(3.1.2)

F_

ou

Ou2 + P
our

Ouw

(e, +/_u
I°]r=

F, ---- T_ (3.1.3)
z-=
r_

vlloour T_,
Ov2 + P G, = - rr/

Om_, T,,
(e,+ _,, T.

(3.1.4)

Ow

Ouw

Qvw
Ow: + P

(e, + P)_
I Io]H,=-

r=
T_

(3.1.5)
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and
T. = 2.u. + _t(u.+ v. + ,4,.)

T=- _,(u. + _,)

T,, -. 2,v, + _t(u. + I,, + w.)

T,.= _,(_.+ w,)

T= = T..

:., - fj.

T.- 2_w.+ _t(u,+ v,+ w.)

T,.= wr= + vT,¢+ wr= + _P,-_e_

x,v= uTj.+ wy, + v.,_,.+ yl_P,-_e,

Tk "= UT= + vr_ + wr= + y/_P,-le,

P
• a=

Q(r- 1)

e,- Oe + O(u2+ v= + w=)
2

(3.1.6)

For the present application, the second coefficient of viscosity is calculated using Stokes'

hypothesis, _. = -2/3tc The equations of motion are completed by the perfect gas law which takes the
form

P = oR'/" (3.1.7)

It is useful to non-dimensionalize the equations of motion so that certain parameters, such as

the Reynolds and Mach numbers, can be varied independently. The non-dimensional variables
chosen in this investigation are

x* -x__ * Y t* = t
L Y " L L/V_

u* = u_u._ v* v_y_._V_ V_ w * = V_

O* *" Q P* - P T* = T_T__
0---_ oV_"---_ T_

(3.1.8)
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In addition, for the analysis of arbitrary geometries the equations of motion can be general/zed
by using body-fitted coordinates. Using the independent variable transformations

"r=t

-- _(x,y,z,t)

'1= 'i(x,y,:,t)

= _(x,y,z,t)

(3.1.9)

the body-fitted Cartesian coordinates in the physical domain become uniform coordinates in the
computational domain. The transformation allows easier implementation of boundary conditions

since the geometry surface lies along the boundaries of the computational domain. Upon applying the

transformations and non-dimensionalizing, the three-dimensional Navier-Stokes equations can

b¢ written as (where the superscripts '*' have been omitted for clarity)

Q, + (/_i + Re-'F,)¢ + (& + Re-tG,), + (/tl + Re-t/_,)¢ = 0 (3.1.10)

where

= .r-tQ

F,(Q,O = J-'(_Z2 + _Y, + _,a, + _,n,)

a,(Q,,1) = I-'(_2 + ,l_', + ,1,a, + _,n,)

£',(Q,0 = J-'(_2 + _', + _,a, + _,)

(3.1.11)

The viscous fluxes are simplified by incorporating the thin layer assumption (Baldwin and Lomax

(1978)). The thin layer assumption states that for high Reynolds number flows, the diffusion terms

normal to a solid surface will be greater than those parallel to the surface. In the current study, viscous

terms are retained in the direction normal to the hub/shroud surfaces (g-direction) and in the

dire.'tion normal to the blade surface (tl-direction). Thus, the non-dimensionalized and
transformed equations now become:

{_, + (Fi)¢ + ((_i + Re-' (_,), + (/_i + Re-t/t,)¢ " 0 (3.1.12)

where

0

Ktu_ + K_,

Klvq + K_y

Ktw_ + K_, (3.1.13)

Ic,= +.,,,,+.,w,)
(3.1.14)

q2 : u2 + v: + w2
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The vector/_, is obtained by replacing I1with g in Eqs. (3.1.13) and (3.1.15). If all the viscous

terms are neglected, then the equations become the inviscid (Euler) equations of motion. The
Jacobian of the transformation and the other metric quantities are given by Rai (1987, 89) and Pulliam

and Steger (1985).

j-I = x_,_zc + xcvr_, + x_,tz t _ x_tz _ _ xqytz ¢ _ xcy_z¢ (3.1.15)

(3.1.16)

Th ffi -- x,*/_ -- YP77-- zPh

The metric derivatives are evaluated using three point central differences in the interior of the

computational domain and three point backward differences on the boundaries.

3.2 Integration Procedure

The governing equations of motion are integrated in time using the Approximate Factorization

(AF) implicit technique developed by Beam and Warming (1977). Applying the AF technique for
three-dimensional problems is accomplished by solving three one-dimensional operators, each

requiring the inversion of a block tridiagonal matrix system with 5x5 blocks. Newtown iterations are
applied within each global time step to increase stability and eliminate the linearixation errors caused

by the factorization process. To apply Newton's method, one starts with an initial guess for the solution

and iterates according to:

= (32.1)

This method can be applied to the unsteady Navier- Stokes equations by setting

I(Q) ffiQ. + (F_)c+ ((_i+ Re-' (_,), + (/_i+ Re-'/t_)t (3.2.2)

and

(3.2.3)

Noting that, for example,

(3.2.4)
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wheret] is a Jacobian matrix, the factored, iterative, implicit integration algorithm can be defined by

(R_ (1987, 89))

[z+ A,t',_+ [ A,/'v,_+ )]"

+ :_-¢.. _ + a¢c-_ -

= _ a,[._ Q_ +
(3.2.5)

+
(8.)._+./_- (_,).,,_./_ (6".)..+./_- ((_._',,-./_

Aq ReAq

V,,>. - ]+ - _-_

where

\ ae/ \-_ j \--_j
(3.2.6)

(3.2.7)

and A, V, and 8 represent forward forward, backward, and central difference operators. In equation

(2.21), _' is an approximation to L7"÷'. The quantities F_,G_,/t_, ¢_,, and/t, are numerical fluxes which

are consistent with the physical fluxes F_,G_,H_, G,, and/_',. If p = 0 then L)" = L_", and when the

equation is iterated to convergence _" = _'*'. As the left hand side of equation (3.2.5) is driven to

zero, the linearization and factorization errors associated with the AF technique are also driven to

zero. If only one iteration is used then the integration scheme reverts to the conventional AF type

scheme (Beam and Warming (1977)). Typically, unsteady calculations require two to three iterations

per global time step to reduce the residual of the density by three orders of magnitude (Rai (1987, 89),

Dorney et al. (1992)).
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The inviscid numerical fluxes F_,G_, and/_ are discretized using Roe's scheme (Roe (1981)).

The numerical fluxes are then evaluated from a family of high accuracy representations of the fluxes

developed in Chakravarthy and Osher (1985). For example,

+ (1 + #)AI,.+,r_ + (1 -4 --_ AF+i-I/_'_

(3.2.8)

where (F_),+,/u_ is the first order accurate upwind flux given by

(r,),...,,,.- +(i%..,,1-' •_(AF ,-,r,_ - AF-,+,/_) (3.2.9)

and the additional terms in Eq. (3.2.8) are used to increase the order of accuracy. The third order

accurate upwind biased difference scheme is used for interior grid points and either first or second

order accurate upwind differencing is used at boundary points.

The flux differences (AF ±) in Eqs. (3.2.8) and (3.2.9) are calculated using Roe's scheme and are

given by

AF*,÷,r_._ = ./1",+,/...# x ((2,÷,,_ - Q_) (3.2.1o)

The flow variables needed to determine ,4-* between grid points (i + 1/2, j, k) are calculated using

Roe's averaging formulae:

Vi+ l/_;,k m

Wi+ t/74, t m

(3.2.11)

(h,),+,:,,.,= _ + o,/_,+,_

where ht is the total enthalpy and is defined as

(3.2.12)
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The Jacobian matrix/I -_ can be written as:

_i ffi Tc-_A_T_ (3.2.13)

where Tl and Ti z are eigenvectors and which can be expressed as (Pulliam and Steger (1985)):

T_ m b, +i=o b'
b,,- &> i,,,,+i=o
i_,/0,- _)+,,cb,- i,,_) i_,/(y- _)+,,(b,,- _)

f,
_+_.

Sl

R_I(R,+:)/0'- I)+R_]

R2

R,(,,-_:,_)

R21(R,+ _)/0'- 1)+R_]

(3.2.14)

_I - R,/,:)- (b,- _,.,)/_

_.(i- R,/a')- (_,_- b')/,_
R,(RI - R_a)

R,(RI + R_a)

- _,[@-l)v- f,_l

- _,[@- 1)_+ _,_1

_#(l'- 1)w/a 2- f_/O

_.(r- 1),,,/,:
- R,[0,- 1).,- f_l
- R,[0'- 1)w + _:]

f.0'- 1)"/,'_
fx>'-_)u/<,:- f,i<>
f,@-i)_I:,+f,/_

- R+I@- i),, - _.,,1
- _.10'- i),, + +._l

- _(_,- 1)la 2

-fx,,-_)1:'
- f.@- 1)1:,
R,(_- 1)

R,0,-1)

(3.2.15)

Rl }'- 1= __y_@_+ : + ,:) R_= el@/2)

f. =_./,, f, =_,/,<

R, = l/((la _/'2)

f. =_./,,
(3.2.16)
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The eigenvectors for the B and (_ matrices can be obtained by replacing _j in Eqs. (3.2.14) and (3.2.15)

with 11and _. The matrix containing the eigenvalues of the Jacobian matrix is given by

where

,/l_ _" I

,1,1" 0 0 0 0 "[
0 2,2" 0 0 0

0 0 ,ts* 0 0
0 0 0 Z4* 0
0 0 0 0 _ts*

(3.2.17)

24 - 2, + xa (3.2.18)

The superscripts ':t:' in the previous equations refer to the contributions from the downstream and

upstream running characteristic waves. To prevent expansion shocks, the eigenvalues in Eq. (3.2.18)
are replaced by a nonvanishing, continuously differentiable approximation which can be written as

(Yee et al. (1985)):

where n = 1,5

I,kl P.I > aL
(3.2.19)

The flow variables needed to determine the viscous fluxes, G, and/_,, are evaluated using

standard central differences. For example,

Q_+,_ - -_(Q,,_+ Q_+,.,,) (3.2.20)

(Q.),_+,_= Q,_÷,.,- Qo

The corresponding viscous flux Jacobian,/i4, can be written as (Pulliam and Steger (1985))

m J--|

'0 0 0 0 0

,,,,, s,a,(o-') s_a,(o-') s,a,(o-') o
m,, $:_,(0-') S,c_,(O-') Ss$,l(O -t) 0

m,. so,(o-') s,a,(o-') s,a,(o-') o
ms, ms2 ms_ ms4 So¢),(O-'_

(3.2.21)
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where

,,,2, = - s,a,(u/e) - sO#/Q) - s,a,(_/e)

m,, .. - s_,(./e) - s,o,(v/e) - s_,(_/e)

m,, = - s,a,(,/Q) - sp,(v/e) - s,a,(w/e)

,.,, - - soo,I- (,,M) + (u' + ._ + ,¢_)/Q]

- s,a,(u'/e) - s,a,(_/e) - s,a,(_Ve)

- 2sp,(u_/Q)- 2s,a,(uw/Q)- 2s_a,(_/e)

m,, = - s##/e) - m_, m,, - - soa#/e) - m,,

(3.2.22)

m_, .. - Soa,(w/o) - m,t

s_ = Cu/3)_a, s, = O_/3)_a,

S, =/_[_/,' + (4/3)r b' + T/,2] S s = _/3)T/_/,

s, = _,l_?+ _/ + 0/3),7,'1

The viscous flux Jacobian, N can be obtained by replacing I1in F_.qs. (3.2.21) and (3.2.22) with g. The

equations of motion and solution procedure used in the two-dimensional computational procedure

are a direct subset of the equations developed above, except that the inviseid fluxes are calculated

using Osher's (1981) approximate Riemann solver.

3.3 Turbulence/Transition Model

The original version of the CFD code used in the present program contained a simple turbulence

model which facilitated reasonable predictions in an unsteady flow environment. Limitations of this
model were that it assumed fully turbulent flows on airfoil and endwall surface whereas in reality flow

is transitional on airfoil surfaces especially in available benchmark quality experiments against which

this code was planned to be verified. Appropriate modifications were, therefore, made to the
turbulence model to allow transitional flow calculations. Additional modifications were also made to

account for free stream turbulence level, surface roughness and extra rates of strain to allow realistic
predictions in the complex flow environment of the rocket turbopump. All of these modifications were

made in the context of the base turbulence model, these modifications are, however, of generic nature

and would still be applicable if a higher order turbulence model was implemented in the code. The

scope of the present program limited implementation of the higher order turbulence model in the

code which is needed to obtain further reliable predictions from the code.
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An eddy viscosity formulation is used in the code to model the effect of turbulence. Effective

viscosity and effective turbulent conductivity are defined as:

3.3.1

Effective viscosity - p = PL + PT

x PL ,aT
Effective conductivity = '-'p_--= _ +

PrL and Pr T are the laminar and turbulent Prandtl numbers respectively.

Baldwin-Lomax Turbulence Model

Turbulence model developed by Baldwin-Lomax (1978) was used in the original CFD code used

in the present program.

In the Baldwin-Lomax (B-L) model turbulent eddy viscosity i1T is described by

f_'r,._ s < sin_,
(3.3.3)

/_rl= i//_Tm_" S >Sin

where s is the distance normal to the solid surface and smmover is the smallest value at which

#rm,, " #r,,,. In the inner region, the eddy viscosity is calculated using the Prandti-Van Driest
formulation

#rN, = OPI o_I (3.3.4)

(3.3.5)

(3.3.6)

l = ksD

where

and

D = 1 - exp(-y+/A +)

and the magnitude of the vorticity, lcol can be written as:

I,_I =/(,, - _.)_+ (_.- _,)_+ (_. - ".)_

_.= _,_.+ _m.+ _

",= "_, + "a,+ "_,

",= "/:,+ "a,+ "_,

",= "_,+ "a,+ "_,,

v," ,'_,+ ,'a,+ "_

and y+ is the law-of-the-wall coordinate

_.x.s (3.3.7)
y+ = /_,
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In the outer region the eddy viscosity is calculated using

(3.3.8)

where K is the Clauser constant, C_ is an additional constant and Fwa_e is described by

= c.,s,.,q?/F.., (3.3.9)

The term Fmax is the maximum value of F(s) along a given computational grid line normal to the
surface and

F(s) - s le, ID (3.3.10)

The Klebanoff intermittency factor, F_aeb(S) is given by:

= (1+ (3.3.11)

and q_is the difference between the maximum and minimum velocity in the profile. The vortidty and

velocity are calculated in the appropriate reference frame (i.e., in the absolute reference frame for
stationary surfaces and in the relative frame for moving surfaces). The constants used in the B-L
turbulence model are:

A ÷ = 26 Cq- 1.6

Cm,, = 0.3 C., = 0.25

k I 0.4 K I .0168

(3.3.12)

The Baldwin-Lomax turbulence model is based upon two-dimensional boundary layer data
and as such, is not well suited for corner flows such as those at the blade/endwall juncture.

Originally, the treatment used to implement this turbulence model in the corner regions (Ral

(1989)) was the technique proposed by Hung and Buning (1984). In this technique, the turbulence
model is computed separately for each endwall and the blade surface. The mixing length in the corner

region is computed depending on the computational indices of a given node. For instance, consider

the case when the Jfconstant computational lines run normal to the blade and the K-constant lines

run normal to the endwall. For any computational node whose J-wise index is less than its K-wise
index, the normal distance is defined as the distance from the blade surface to the grid point and the

parallel distance is defined as the distance from the endwall to the grid point. The mixing length for

the inner region of the boundary layer is then calculated as

(3.3.13)

where s is the parallel distance and n is the normal distance. The eddy viscosity is then based on the

flow variables along a computational grid line from the airfoil surface to the grid point under
consideration. Likewise, for any computational node whose J-wise index is greater than its K-wise

index, the parallel distance is measured from the blade surface to the grid point and the normal

distance is measured from the endwall to the grid point. The eddy viscosity is then based on the flow

variables along a computational grid line from endwall to the grid point. Two significant problems
arise from this particular three-dimensional implementation of the Baldwin-Lomax turbulence

model. First, the eddy viscosity distribution in the corner regions is discontinuous across the J=K

computational lines and can cause large gradients to occur in the velocity field. Secondly, this

particular blending is dependent upon the computational grid density and stretching in both
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directions. It was found, based upon numerical simulations, that flow solutions in the blade/endwall

region were extremely sensitive to changes in the computational grid structure.

A blending function was then used to smoothly vary the eddy viscosity distribution between the

blade and endwaU. Separate eddy viscosity distributions are computed for the blade and endwall

surfaces along the computational lines which run normal to each surface, respectively. The eddy

viscosity in the corner flow regions is then computed based upon the following blending function

according to the work of Vatsa and Wedan (1988)

P,,,Pr b + _ _r,, (3.3.14)

where ib is the distance from the blade surface to a given node, lew is the distance from the endwall
surface to the node, and p_ and pTew are the eddy viscosities computed from the separate blade and

endwall flows, respectively. This type of blending creates a smooth eddy viscosity distribution in the

corner regions.

3.3.2 "turbulence Model for Surface Roughness

The need to model surface roughness effects was illustrated by tests conducted at NASA MSFC

for the SSME turbine (Boynton et al. (1992)). Significant improvement in the performance of the

turbine was achieved by polishing the hardware currently used in the SSME. Surface roughness erodes
the effect of viscous damping near the wall causing an increase in mixing length in the inner part of

the boundary layer. A model proposed by van Driest (1956) can be used to account for this

phenomena. The modified damping function due to surface roughness is given as:

Dm - D + Dr (3.3.15)

Dm - damping term for modifying turbulent viscosity

D - damping term for smooth surface (equation 3.3.5)

Dr - -60 y+/r+A +

y+ is defined in equation (3.3.7)

A + is defined in equation (3.3.12)

r + can be obtained by using surface roughness height instead of's' in

equation (3.3.7)

Predictive capabilities of this model were demonstrated in a publication by Blair (1992) through

comparison against data obtained on a smooth and rough airfoil as a part of the NASA MSFC contract
# NAS8-37351 as indicated in Figure 3.3.1.
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3.3.3 Turbulence Model for Extra Rates of Strain

Extra rates of strain such as streamline curvature, system rotation and streamtube contraction

ratio have been known to have significant effects on the structure of turbulence as discussed by

Bradshaw (1973), Johnston (1970) and Sharma and Graziani (1982). A solution of Reynolds stress

transport equations is actually needed to resolve these effects properly, but the development of

closure models for these equations is still in infancy. Simpler models are, therefore, needed to capture
the effects of these flow features for engineering application. Modifications to turbulence model

developed in the present program are based on the work of Sharma and Graziani (1982), who utilized

Towsend's hypothesis (1956) which states that the turbulent kinetic energy and Reynolds shear stress

are related by a constant in the inner part of the turbulent boundary layer. One can, therefore, capture
these effects of extra rates of strain by interrogating the transport equation for turbulent kinetic energy

and the total Reynolds shear stress. Modified turbulent viscosity can be fairly accurately estimated as

the ratio of the generation terms for the Reynolds shear stress equation to the production terms for

the turbulent kinetic energy transport equation. No empirical constant is required in this approach
and it yields fairly good results for flows in the presence of extra rates of strain.

For incompressible flows production terms for the three normal stresses and the turbulent

kinetic energy are given below in Cartesian coordinate with rotation in the axial, tangential and
normal direction:

- (+- (33.16)

(3.3.17)

43



Adding the above three equations yields production terms for the turbulent kinetic energy
w-r

(3.3.19)

It is apparent from the above four equations that whereas each individual normal stress

component is affected by rotation (_2x, y, z), total turbulent kinetic energy is unchanged indicating that
turbulence models based on turbulent kinetic energy transport equation would fail to capture the

effect of rotation explicitly. Since rotation terms change the distribution of energy in various
components, they could either enhance or reduce mixing and, therefore, losses and heat loads in
turbomachines.

Generation terms for the diagonal components of Reynolds shear stress are given below to show

a more complex effect of rotation in turbulent flows, effects of streamtube contraction and streamline

curvatures are also present in these terms but these are not apparent due to the use of the coordinate

system:

(3.3.20)

(3.3.21)

(3.3.22)

A generation term for the magnitude of the diagonal stress (defined as T - _/lar_ + _ + _ )

can be deduced from the above three equations by multiplying equations (3.3.20), (3.3.21) and (3.3.22)

by _/T,_/T and W/r, respectively, as shown below'..

G(t) - TERM (D + TERM (_) + TERM (]) (3.3.23)

where

TERM_ (e_ _ + e_ W) (aw_+ e_ e_) + + __+__" ¥ +-- + T T
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TERM (_ in the above equation represents a generation of Reynolds shear stress due to the

effects of rotation and curvature. This turbulence generation mechanism is not present in the

turbulent kinetic energy production terms as indicated by the absence of rotation terms in equation
(3.3.19).

TERM (]) represents the generation of Reynolds shear stress due to the effect of streamtube
convergence and divergence.

TERM O represents the direct generation of Reynolds shear stress. It was pointed out by

Bradshaw (1968) that the generation of Reynolds shear stress is also affected by the pressure-velocity

correlation terms present in the complete Reynolds shear transport equation. In the absence of extra
rates of strain for equilibrium turbulent boundary layer flows, generation of turbulence given by

equation (3.3.19) and by TERM (_) modified to account for pressure-velocity correlation have to be

the same, therefore, direct generation of Reynolds shear stress can be written as:

TERM (_) + Extra terms from pressure - velocity correlation - _P(K) (3.3.24)

Generation of the diagonal component of Reynolds shear stress can now be written as:

a(,) = + ( RM @ + TERM@)

+ K (TERM (_ + TERM (_) .1
* P(K) J

(3.3.25)

This equation shows that production terms in the turbulent kinetic energy equation or other
turbulence mixing equations must be modified to properly account for the effects of extra rates of

strain. These modifications have invariably been conducted by using ad hoc expressions, present

analysis indicates that these can be exactly deduced from turbulence transport equations.

In equilibrium turbulent boundary layer flows, production and dissipation terms in the turbulent
kinetic energy transport equation balance each other. Dissipation and generation terms in the
Reynolds shear stress transport equation must, therefore, also balance each other in equilibrium

boundary layer flows. Using Bradshaw's (1968) model for dissipation terms, the behavior of Reynolds

shear stress transport equation can be expressed as:

= *" (Dissipation)a(,) R

(3.3.26)

where

L0 -- dissipation length
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or

By substituting equation (3.3.26) in equation (33.25) results in:

p(K)[1 + K (TERM (_) + TERM (_) ].r srJ_- P(K) ' L--_"

,.rLo l
L --J T PO0

In the absence of TERM (_ and TERM (_ , it can be shown that

(3.3.27)

(3.328)

_rin this equation can, therefore, be modified to account for TERM (_

(3.3 9)

and TERM (_ as:

(3.3.30)

where

and

Pr. ffi modified turbulent viscosity

#r - turbulent viscosity from Baldwin - Lomax model discussed in Section 3.3.1

R/.O,R- Richardson number for rotation & curvature --

R/u, ffi Richardson number for three - dimensionality -

TERM @
P(K)

TERM
P(K)

Impact of these modifications can be illustrated in boundary layer flows for two-dimensional

rotating ducts and at the line of symmetry in cascades.

In two-dimensional boundary layers experimental data (Klebanoff (1954)) indicates that

ffi _, u-f-- K,v -f - 0.4K and w-f- 0.6/_

In two-dimensional rotating ducts, equation (3.3.26) simplifies to:

which is almost exactly the same as deduced by Johnston (1971) from experimental data.

For boundary layer flows at the line of symmetry equation (3.3.26) simplifies to:

which was used by Sharma & Graziani (1982) to yield good estimates of heat loads on the suction side

of a turbine cascade at the mid-span as indicated in Figure 3.3.2.
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Modification to turbulent viscosity suggested by equation (3.3.26) are generic and can be

implemented in one- or two-equation turbulence models almost exactly in the form presented by

the equation.

FRACTION OF SUCTION SURFACE

e.2 8.4 O.O U 1,1)

FRACTION OF SUCTION SURFACE

Figure 3.3.2 Turbulence Model Modified to Account for Extra Rates of Strain

(Sharma & Graziani (1982)) Yields Good Estimate of Midspan

Stanton Number on Langston's Turbine Airfo_

(a) Nominal Inlet Boundary Layer to the Cascade.
(b) Thin Inlet Boundary Layerto the Cascade (Referto Figure 7.3.2

for the Magnitudes of Flow Convergence at the Cascade Airfoil

Milan).
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3.3.4 TransitionModel

Althoughall boundarylayerflowsstart in a laminarmode,theybecometurbulentby passing
througha transitionalregion,the regionsof laminarand transitionalflowsareonly significantin
turbomachineryoperatingunder a Reynolds number of about one million. For rocket applications

Reynolds numbers are invariably larger than ten million and these applications transition plays a small
role on the overall development of the viscous flows. A knowledge of the transitional region was,

however, essential during the code verification and application part of this program since most of the
available data used in these tasks were acquired at moderate Reynolds numbers where laminar and

transitional regions were significant. Transition models were, therefore, implemented in the CFD

code to accomplish the defined tasks.

In three-dimensional flow situations, the transition from the laminar to the turbulent state was

assumed to be instantaneous. The transition point was specified along grid lines to simulate the

physics of the flowfield.

For two-dimensional and unsteady flow computations the onset of transition was determined

by using a correlation based on the work of Mayle (1991) and Hourmuziadis (1990). According to this
correlation, onset of transition occurs when the local boundary layer momentum loss thickness

Reynolds number exceeds a critical Reynolds number.

R0c - 40/,_ (3.3.24)

where

and

R0c -

Tu =

Critical Reynolds number.

Local turbulence level which needs to be specified as input to the computer

code for single airfoil row or for the first row of the stage, it is automatically

calculated for the following rows.

Numerical computations are conducted by modifying the turbulent viscosity in the transitional

region by using the approach suggested by Sharma (1987).

PTM
PTM
PT
F

R0

--- F*pT
- Modified turbulent viscosity
-- 'lhrbulent viscosity calculated in Section 3.3.1

--- Intermittency factor having a value of zero in laminar regions
and a value of 1 in fully turbulent region

- 1 - exp ( - (S02-5 - S0c2"5)/R0c 2"68-)
- Reynolds number based on momentum loss thickness of the

boundary layer.

(3.3.25)

48



3.4 Boundary Conditions

3.4.1 Inlet Boundary Condition

In the following expressions, u, v, w are velocities in the x-, y-, and z-directions, p is static

pressure, 0 is density, c is speed of sound, s is entropy, and h is total enthalpy, a is arctan(v/u) and {p

is arctan(w/u); boldface type indicates a new updated value, subscript 0 indicates an initial value, and

subscripts of 1 and 2 indicate a current value at inlet and one point downstream of inlet, respectively.

The following boundary ¢xmditions were available in the original version of the Rai code (Rai

(1989)):

2
Reimann invariant 1 = R, = uo + _ _1

(3.4.1)

Reimann invariant 2 = R 2 ffi u2 - 2 (____2_ (3.4.2)
)'-1_ 0,/_2/

u, = (R, + R,)/2

vl = vo (3.4.3)

W 1 m W 0

c, = _-(R, - R2) (3.4.4)

s, = so (3.4.5)

(3.4.6)

The following modifications were made to, in effect, hold inlet total pressure, in addition to

reducing the stiffness of the boundary condition:

First define the variable h' as follows:

h'= 2c2
+ u2= 2h - (,,2+ ,,,_)

Assuming hi = ho, that is, inlet total enthalpy is held at its initial value,

h'! = 2ho - (v/ + w, _)

It can be shown that (3.4.8), together with the assumption

u,- y2c_-__---_tit1 = u2- y2c_--21= R2,

yields:

(3.4.7)

(3.4.8)

(3.4.9)

(3.4.9a)- +/R21 -(h',-R2 2) =0_ 2T(l+y-_21)c,2 --c,
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This isaquadraticequationfor czthat canbesolvedwith thequadraticformula.Then,

ut = R2 + 2cl
y-1

(3.4.10)

St _$o

[ ct _'/(_-') (3.4.11)
01 - _)el/

O,c," (3.4.12)
PI= ),

3.4.2 Surface Boundary Conditions

The surface boundary conditions in Rai code (Rai (1989)) were a first-order adiabatic wall
condition, that is, in addition to the no-slip condition for velocity, zero normal pressure and density

gradients were imposed. Options were added to specify either wall temperature or heat flux on the
surfaces, which modified the density condition.

The specified wall temperature condition that was implemented was developed by Griffin

(1990). It requires an additional input file containing adiabatic wall temperatures on the surfaces, and

the wall temperature is prescribed as a percentage of the adiabatic wall temperature. The percentage

is input in the RALIOB shell script. The adiabatic wall temperature file can be obtained by running
RAI3DS with the adiabatic wall condition; the file will get written out in routine WALTMP, which will

also read the file if the option to specifywall temperature is chosen. The UNICOS jobstream will need

modification to assign these files to the file environment.

The following is the derivation of the second-order density condition allowing specified heat
flux. Here, Q is heat flux, k is the coefficient of thermal conductivity, R is the specific gas constant,

T is temperature, p is static pressure, Q is density, and y is distance from the wall.

Assume

Q - -k_- -k ..

Assuminga zero normalpressuregradient, this yields

Q= _, a0 = _=P '

Now assume that Q is some quadratic function of y, given by

o =aY2+bY +c

Then, values of Q at yl, y2, and y3 are given by the system

(3.4.13)

ayl 2 + by1 + c = 01

(3.4.14)'_'e Q' =--t-

(3.4.15)

ay2: + by: + c = 02 (3.4.16)

_s" + bys + c -= Os
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Assuming Yl is zero, that is, at the wall, the system reduces to

b = (Q_- _"_'_ - (Q'- Q,_d
yzv3: - Y:_'s

Differentiating the quadratic equation for _,

at the wall.

From the previous expression for do
ay'

(e, - e,_v,2- (e, - e,_vd = Q'Q.____'
y zvfl - y 22y3 P

Algebraically solving for QI,

o1= ezv'2 - #_vfl e_'(-vzv'2 - YflY') (3.4.17)
yfl - yfl p(.vfl - y2 2)

The values of p and Q at Y2 are used in the implementation of the condition. To define the value

of Q' (note the solver will expect the given heat flux value to be properly nondimensionalized and to

contain the factors of R and k), divide the dimensional Q by the dimensional k, and use a value of 1.0
for R to be consistent with the solver's nondimensionalization scheme. This will result in a value with

units of degrees over length. Divide the resultant value by the inlet total temperature and convert the

remaining length unit to inches to obtain the value of Q' in inches. This is what should be input to the

RAIJOB shell script as discussed by Belford (Appendix A).
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4. CODEVERIFICATION

The predictive capability of the numerical solution procedure (code) can be verified by

comparing the results from the code with:

• Results from exact calculation methods for an unsteady multistage
turbomachine

• A complete set of unsteady experimental data for a multistage turbomachine

• A series of experimental data set from benchmark quality experiments which

simulate various aspects of multistage turbomachines.

Exact calculation methods for an unsteady multistage turbomachine are not yet available. In
addition, a complete set of experimental unsteady data for a realistic turbomachine is also not

available. The verification of the code in the present program was, therefore, conducted by comparing

its predictions with data from benchmark quality experiments which simulated pertinent aspects of

multistage turbomachines. These comparisons, discussed below, clearly demonstrate that the code

provides accurate estimates of loadings, losses and heat loads for airfoil rows both in a steady and in

an unsteady flow environment. This indicates that the code will provide accurate and reliable
estimates of flow fields in a multistage turbomachine and it can be used in the design process to

improve the performance and durability of turbopumps used in the rocket propulsion system.

4.1 Verification of the 2D Steady Aspect of the Cede

Predictive capabilities of the code in a two-dimensional steady flow environment were verified

by comparing theoretical predictions with experimental data obtained at the mean section of three

linear cascades and two airfoil rows in a stage environment. Although flow through the airfoil rows

in a stage environment is unsteady in a strict sense, simple assumptions are made to treat the flow as
steady to demonstrate that steady flow assumptions do yield fairly accurate estimates of the

performance and heat load characteristics of airfoil rows. This exercise indicates that appropriate

assumptions permit cost effective evaluation of airfoil geometries in a multistage turbomachinery;

computational resources required to execute a steady flow simulation are almost two orders of

magnitudes lower than those needed to execute an unsteady flow simulation.

Representative grids used in the 2D code verification are shown in Figure 4.1.1. Nominally they
contained 101"21 points in the inner grid and 50"31 points in the outer grid. An extensive evaluation

of the effect of the grid points on the accuracy of loss and heat transfer predictions was conducted as

part of work funded by the Naval Air Systems Command under NAVAIR Contract

#N00140-88- C-0677 at the United Technologies Research Center by Dorney, Davis and Edwards

(1992). Since the base CFD code in this effort was the same as that used in the present program, results

from the NAVAIR Contract are directly applicable to the present program. The focus in the present

program is to achieve engineering accuracy of the solution using minimum computer resources

without compromising the technical results.
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Fieure 4.1.1 A RAI3DC Stator Grid

4.1.1 Kopper's Cascade

The first 2D test case termed as Kopper's cascade was tested in the United Technologies

Research Center (UTRC) Variable Density Supersonic Plane Cascade Wind Tunnel. This cascade had
an aspect ratio of 2.37 and pitch to chord ratio of 0.8925. The air entered the cascade with an inlet angle

of 31.1 degrees and a Mach number of 0.4187. The Reynolds number based on axial chord (1.268

inches) and exit velocity was 500,000 and it was tested with a pressure ratio (exit static

pressure/upstream total pressure) of 0.625. At the operating condition this airfoil had a separation
bubble on the airfoil pressure side which affected the airfoil loading distribution on both the pressure

and the suction sides. This configuration was used in the code verification process to demonstrate that

accurate simulation of the transition process is essential to capture relevant features of the flow field.
Theoretical calculations were conducted both in a transitional and a fully turbulent mode.

Theoretical predictions from the code are compared against experimental data for airfoil

surface static pressure distributions (Figure 4.1.2). Results from transitional calculations exhibit
excellent agreement with the experimental data while the fully turbulent calculations miss

experimental behavior in the middle 40% of the airfoil.
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Figure 4.1.2 Airfoil Press_ Dimibution for Kopper's Cascade

The nature of the flow near the surface of the airfoil can be more clearly highlighted through

review of the strealdines around the airfoil streaklines generated from the fully turbulent calculations

and the transitional calculations are shown in Figure 4.1.3. Both calculations predicted separation

near the pressure side of the airfoil as indicated in this figure; however, the separation bubble

predicted by the transitional calculation is larger and better defined, yielding better agreement with

the pressure distribution data on both the pressure and the suction sides of the airfoil as indicated in

Figure 4.1.2.

Figure 4.1.3 Predicted Streaklines Near Kopper'sAirfoiL

(b)

4.1.2 Hodson's Cascade

The second 2- D test cascade termed as Hodson's Cascade was tested at the Whittle Laboratory

at Cambridge University in U.K. This linear cascade contained seven airfoils with an aspect ratio of

3.0 and a pitch to chord ratio of 0.698. Test conditions involved ambient air entering the cascade at



approximately58.89 ft/sec. The Reynolds number based on axial chord (3.2 inches) and exit velocity

was 315,000. Additional details are given by Hodson (1983).

This airfoil had a small separation bubble on the airfoil suction side downstream of the maximum

velocity point. Comparisons of predictions with experimental data for this cascade were made to verify

the boundary layer and the transition prediction capability of the code. Calculations were conducted
both in a transitional and a fully turbulent mode.

Measured airfoil surface static pressure coefficients are compared to theoretica! predictions in

Figure 4.1.4. Although both fully turbulent and transitional calculations show good agreement with

the data, transitional calculations show slightly better agreement with the data on the airfoil suction
side.

o14.0_
_1) L! 0.2 _1 0.4 e.S O.S e2 _l 0.9 1.e

Figure 4.1. 4 Airfoil Pressure Distribution for Hodson "sCascade

Measured boundary layer parameters on the airfoil suction side are compared to theoretical

predictions in Figure 4.1.5. Plots of boundary layer momentum loss thickness are presented in Figure
4.1.5a. Results from transitional calculations exhibit excellent agreement with the data, showing

improvement over fully turbulent calculations. Figure 4.1.5b shows a comparison of predicted and

measured shape factor (displacement thickness/momentum loss thickness). Again results from

transitional calculations agree more closely with the data, although the transitional results appear to

overshoot the data in the trailing edge region. This overshoot is a result of the integration method used
in calculating the integral parameters, the displacement and the momentum loss thicknesses. The

definition of these parameters calls for integration along lines normal to the surface. The grid lines

are normal to the surface near the airfoil but become quite skewed away from the surface at the trailing

edge. A better method of integration would be to interpolate the results from the calculations onto
a grid which has normal lines at the trailing edge before calculating the boundary layer integral

parameters. Such a method would provide even better agreement with the experimental data than that

indicated in Figure 4.1.5.
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Figure 4.1.5 Boundary LayerParameteTsforHodson "sCascade.

(a)Momentum
(b)Shape Factor

4.1.3 Dring's Stator (Midspan)

The third 2D test configuration termed as Dring's Stator (midspan) was tested at UTRC as the

first row of the 1 ½ stage large scale rotating rig (LSRR). Although flow in this airfoil row is affected

both by three-dimensionality (due of radial pressure gradient) and unsteadiness (induced by relative
movement of the downstream rotor), these effects are not very pronounced and a two-dimensional

simulation yields fairly reasonable estimates of flow through the midspan of the airfoil. The aspect
ratio for this annular cascade is 1.0118 and pitch to chord ratio at midspan of 1.3. Test conditions

involved ambient air at approximately 75 ft/sec. The Reynolds number based on axial chord (6 inches)

and exit velocity is 612,000. Additional details are given by Blair et al. (1988).

Detailed heat transfer data are available at the mean section of this airfoil. Comparisons of

predictions with experimental data for this configuration were made to verify the heat load prediction
capability of the code. Calculations were conducted both in a transitional and a fully turbulent mode.

Measured airfoil surface static pressure coefficients are compared to theoretical predictions in

Figure 4.1.6 showing excellent agreement between data and predictions; both transitional and fully

turbulent calculations yielded identical predicted values for static pressures.
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Figure4.1.6 2D Steady Version of the Code (RAI2DC)

Developed to Verify the Code Against Basic Data

Measured heat transfer coefficient (Stanton number) distributions along the midspan of the

airfoil are compared theoretical predictions in Figure 4.1.7. Fully turbulent calculations are found to
overestimate the heat transfer coefficients on the pressure side and over initial 60% of the suction

side. The transitional calculations are, however, found to yield excellent agreement with the data over

both sides of the airfoil. This figure illustrates need to model transitional nature of the boundary layer

to accurately estimate heat loads on airfoil rows.
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Figure 4.1. 7 Transition Model in the Code (RAI2DC) Provides Improved

Estimates of Dring's Stator Airfoil Surface Stanton Number

4.1.4 Dring's Rotor (Midspan)

The fourth 2D test configuration termed as Dring's rotor (midspan) was tested at the UTRC as

the rotor in the 11/_ stage LSRR. Flowfield on this airfoil is strongly affected by unsteadiness due to
rotation of the rotor relative to the adjacent stators. Measured time-averaged experimental heat

transfer and static pressure data on this airfoil, however, indicated that both of these parameters were

unaffected when the rotor was placed at two distinct distances (15% and 65% axial chord) downstream

of the first stator. This result showed that it was possible to simulate the flow through this airfoil by

assuming a steady flow assumption. Only fully turbulent calculations were conducted because of the
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pTcscncc ofa rclativcly large inlet turbulence level gcncratcd by thc upstream stator. The aspect ratio
of th/s rotor is 0.9464 and pitch to chord ratio at midspan of 1.01. Test conditions involved almost

ambient total pressure with an axial velocity of 75 ft/scc and a rclativc inlct angle of 40.6 degrees. The

Reynolds number based on axial chord (6 inches) and exit velocity is 525,000. Additional details arc

given by Blair ct al. (1988).

Measured airfoil surface static prcssure coefficients arc found to bc in good agreement with

theoretical predictions as shown in Figure 4.1.8(a). Fully turbulent calculations modified to account
for free stream turbulence level and surface curvature arc found to yield better agreement with the

airfoil surface Stanton number (heat transfer coefficient) data (Figure 4.1.8(b)) than the base

turbulence model available in the original Rai code. This result indicates that steady flow simulations

can yield fairly reliable estimates of time-averaged loadings and heat loads on airfoil rows operating

in an unsteady flow environment; appropriate modifications arc, however, needed to the turbulence
model to account for physical variables existing in the flowfield.
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Figure4.1.8(a) 2DSteadyCascadeVersionof theRAt Code(P.4t2DC)
Developed to Verify the Code Against Basic Data
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4.1.S Transonic Cascade

The transonic flow prediction capability of the code was verified by comparing calculations to

data obtained for a Pratt & Whitney Transonic Cascade. This cascade, tested in the UTRC Variable

Density Plane Cascade Wind "Iimnel, had an aspect ratio of 4 and pitch to chord ratio of 0.647. The

air entered the cascade at an inlet angle of 48.5 degrees and a Mach number of 0.48. The Reynolds

number based on axial chord (1.5 inches) and exit velocity was 760,000 and it was tested with a pressure

ratio (exit static/upstream total pressure) of 0.528. Calculations were conducted both in a transitional

and a fully turbulent mode. The shape of the airfoil and airfoil surface static pressure distributions are
shown in Figure 4.1.9. Both transitional and fully turbulent calculations are shown to yield good

agreement with the experimental data except in the trailing edge region. The inability of the code to
predict pressures in the trailing edge region can be attributed to the thin layer assumptions used in

the solution procedure. The calculations are, however, found to yield good estimates of lift on the

airfoil indicating that it would provide accurate predictions of flows around transonic airfoils.
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F'g,ure 4.1. 9 Airfoil Geometry and Measured and Predicted

Loadings on thePratt& Whitney _nsonic Cascade.

4.1.6 Energy Efficient Engine (g _) Turbine Lightweight Cascade

The ability of a 2D version of the Rai code ITOMCAT2 - Dorney, et al. (1992)] to compute flow
for an airfoil over a range of incidence angles was verified by comparing its predictions against data

obtained by Sharma et al. (1982). Results from this verification effort, conducted under NAVAIR

Contract #N00140-88-C-0677 at UTRC, are shown here to demonstrate the predictive capabilities
of the code. Grids used in these calculations, containing 101"71 points for the inner grid and 41"21

points for the outer grid are shown in Figure 4.1.10. Measured airfoil surface static pressure
distributions compared to theoretical predictions from TOMCAT-2 and from VISCAS steady

Navier-Stokes developed by Davis et ai. (1986) in Figure 4.1.11 (a through f) over a range of

incidence angles. Results indicate excellent agreement between data and predictions. Predicted total

pressure losses for the airfoil are compared to the experimental data in Figure 4.1.12. Overestimates

of losses at the design and the negative incidence angles are due to the assumption of fully turbulent

flow in the analysis whereas in the experiment airfoil had large regions of laminar and transitional
flows; turbulent flow at positive incidence angles is appropriate since leading edge separation bubbles

induce transition in separation regions.
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Comparisonsof experimentaldatawith theoreticalpredictionsshownin thissubsectionclearly
dcmonstratcthat thiscodcprovidesaccurateestimatesof airfoil loadings,lossesandhe,at loads.The
2Dprcdictivccapabiliticsof thecodearc, therefore,verified.

a: Outer H-grid a:InnerO-grid

Figure 4. I_.10 V'tsctms Computational Grid for E 5 Lightweight 21o'bine Blade
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4.2 Verification of the 3D Steady Aspect of the Code

Predictive capabilities of the code in a three-dimensional steady flow environment were
verified by comparing theoretical predictions with benchmark quality experimental data obtained for
an annular and a linear cascade. The emphasis of this effort was to demonstrate that the code provides
reliable estimates of ioadings, secondary flows and heat loads both on airfoil surfaces and endwalls.
Studies were conducted to quantify the number of grid points on the pertinent features of the
three-dimensional flowfields in cascades. Limitations of computer resources on the NASA MSFC
CRAY-XMP computer did not permit establishment of a grid independent solution; further
evaluation of the impact on the grid numbers on the flowfield was, therefore, conducted as a part of
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the NAVAIR Contract #N00140-88-C-0677 at UTRC using a version of the Rai code (Dorney,

et al. (1992)) and one of the linear cascade geometries used in the present program. Highlights of the
results from the NAVAIR contract are also discussed to demonstrate the predictive capabilities of the

code. The impact of the number of iterations on the predicted flowfield was also investigated to

identify degree of convergence needed to establish ultimate levels of losses and heat loads. A detailed

discussion on the 3D code verification effort conducted under the present program was presented by

Griffin and lklford (1990) and Griffin, Iklforck Sharma and Ni (1991) in international conferences.

41.2.1 lking's Ammlar Cascade - UTilE LSRR First Stator

Detailed aerodynamic data consisting of spanw/se airfoil loading distn'butions, midspan heat
transfer coefficients, and flowfield information downstream of the stator are available for the UTRC

LSRR first suitor. Comparisons between predictiom and experimental data are made to verify the

heat transfer, secondary flows, and performance prediction capabilities of the code. The code was run

in a 3- D annular mode, and calculatiom were performed assuming a transitional flow over the airfoil
surfaces.

Airfoil Pressure Distributiom. Comparisom of the calculated and experimentally measured
airfoil pressure coefficients are shown in Figure 4.2.1 for the 2%, 50%, and 98% spanwise locations.

The pressure coefficient is defined as

The agreement between the measured and computed results is excellent and is consistent with the

results reported by Rai (1987).

64



t ml m
.10.0 o _nl

o14.0 J t J J J 1 J J J

U 0.1 0.2 0.1 0,4 OJ U _7 U U 1.0

F'_Fe 4.21 Airfoil Pressure Distribution for UTRC LSRR F'_st Stator for the

(a) 2°/o, (b) ._O°f_ and (c) 98% Spanmise Location_

Secondary Flows

Secondary flow structure can be seen in plots of exit total pressure contours. The vortex

structures contain fluid from both the endwall and airfoil boundary layers, and consequently represent

regions of low total pressure. Exit total pressure contours for the LSRR first-stage stator are shown
in Figure 4.2.2. The total pressure was measured and computed at a location of 17% of the airfoil

chord aft of the suitor trailing edge. Figure 4.2.2a shows the experimentally measured contours. Figure

4.2.2b shows total pressure contours calculated using a fairly coarse outer grid (the outer grid's

dimensions were 50 x 31 x 25) and an inlet total pressure that was constant across the span. The
predicted results show qualitative features of the measured data. Both show the passage vortices, and

the migration of these vortices toward the midspan. However, the computed vortices are closer to

their respective endwalls than those that were measured. The measured and predicted low total

pressure regions compare well in terms of local loss. The maximum local loss of the tip secondary flow

was measured to be CFIL = -1.5 and predicted to be -1.7. The maximum local loss of the hub
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secondary fiow was measured at -2.5 and computed to be -2.1. The calculation yielding the contours
in Figure 4.2.2c used the same grid as in the previous calculation, but a measured (spanwise-varying)
inlet total pressure was imposed. The inlet boundary layer was measured to be 8.3% of the span at
the hub and 11.67% at the casing. The locations of the computed and experimentally measured hub

passage vortices arc now in closer agreement. The calculated casing passage voncx, although it has
migrated further midspan, is still nearer the casing endwall than was measured. The shapes of the
calculated passage vortices now more closely resemble the shapes of the measured vortices. The
maximum local loss of the hub secondary flow was -2.2. Additional spanwise planes were added to
the grid in an effort to better resolve the endwall effects (as was done by Madavan et al., 1991). Figure
42.2d shows the exit total pressure contours calculated using the refined grid (50 x 31 • 31) and the

measured inlet total pressure profile. This calculation produced results with much greater resolution.
The nuudmum local loss of the tip secondary flow was still predicted to be -1.7, and the predicted
_um local loss of the hub secondary flow was -2.3. The casing endwall vortex computed with the

relatively fine grid is located further from the casing than its coarse grid counterpart, but nearer the
casing than the measured vortex. Additional refinement in the spanwise direction is expected to
further improve the calculated location of the casing vortex. However, due to computer memory
limitations, additional spanwise refinement was not attempted during this study. One possible

explanation for the discrepancy between prediction and measurement at the casing is the effect of
concave curvature. Extra rates of strain introduced by normal pressure gradients, such as those due
to surface curvature, have been shown to have large effects on viscous boundary layer development
(Sharma and Grazianl, 1982). The effect of surface curvature was not modeled in these calculations.

66



\

Oas_a

;Vam-l?

L

gax o..1

Cash_g

!

Max .2. 2 Hub -2.3

F_ 4.22

Hub

Total Pw.s.mre Contours Domn._ream of the UTRC LSRR Fost Stator

(a) ExpetimentaUy Measured ($harma, et al., 1985),

(b) Coarse Grid/Constant Inlet Total Pres.mre Calculation,
(c) Coarse Grid/Measured Inlet Total Pressure Calculation, and

(d) Spanwise-Refmed Grid/Measured Inlet Total Pres.mre Calculation

67



Tom/_ La_

A typical measure of performance for internal flows is the total pressure loss through the
passage. Comparisons of computed and measured total pressure loss through the LSRR first-stage
stator are presented in Figure 4.23. Total pressure loss coefficient is defined as

C_ - p_ - P_'
1/20_ ,

where 1_ is circumfcrentially averaged at each spanw/se plane. The stator "exit" total pressure was
computed and measured at a location 17% aft of the stator trailing edge. Figure 4.2.3a shows total
pressure loss calculated using the relatively coarse grid that was di.unissed in the secondary flows
section. A total pressure that was constant across the span was imposed at the in]eL Corresponding

experimental data is also shown. Features represented by the measured loss data are predicted by
RADDC. Both the esperimcntal and computed results display the maxima and minima associated
with the cndwall secondary flows, but the computed and measured magnitudes and locations of these
features do not agree vcrywcll. That this would be the case was highly predictable after observing the
trends of the computed exit total pressure contours. For the coarse grid/constant inlet total pressure
calculation, both the hub and casing passage vortices arc positioned closer to their respective cndwalls
than the experimentally indicated location. The measured casing boundary layer is much thicker than
the computed boundary layer. The calculation and experimental data agree reasonably well in the
midspan region (the pressure loss coefficient at midspan was measured to be 0.14 and predicted to
be 0.17). In an attempt to more accurately model the stator boundary layers and reduce the artificial
loss generated in the grid overlap region, the outer grid was refined in the circumferential direction
as was suggested by Rangwalla (1989). For a two-dimensional calculation, Rangwalla increased the
number of circumferential grid lines from 31 to 71 and produced a midspan total pressure loss
coefficient of 0.13. Unfortunately, duc to limitations in computer memory in this study, it was not
fcas_le to increase the number of circumferential planes by more than 120_ as was done by
Rangwalla. Grids containing a 20%, 40%, and 60% increase in the number of circurnfcrcntial planes
wcrc generated. However, calculations using each of these grids yielded ncgiigible differences in
pressure loss. Apparently, the grid must be greatly refined in the circumferential direction in order
to achieve any benefit in total pressure loss prediction.

Predicted total pressure loss in Figure 4.2.3b was calculated using the coarse grid and the
measured inlet total pressure profile. The magnitude of the computed and measured maxima and
minima are now in close agreement (except at 20% span where the code fails to predict the low total
pressure loss for all cases and actually predicts a decrease in total pressure loss from 20_ span to
midspan). The predicted location of the relatively high loss region associated with the hub passage
vortex more closely matches the data than the results of constant inlet total pressure case. The
predicted location of the loss region coinciding with the casing vortex moved slightly toward the
midspan. The computed casing boundary layer appears to be slightly thinner than in the previous case.
Figure 4.2.3c shows pressure loss coefficients calculated wit the spanwise-refined grid and measured
inlet total pressure profile. The computed and measured magnitude and location of the relatively high
loss region associated with the hub vortex are not in ex_llent agreement. The predicted location of
the loss region corresponding to the casing endwall vortex, though it has moved further from the
casing, still exhibited poor agreement with the measured location. The reason for this poor agreement
is thought to be duc to the effects of surface curvature, as was discussed in the secondary flows section.

It must be mentioned that predicting total pressure loss required a relatively large amount of
computer time. Although the airfoil loading predictions were converged after the residuals had
dropped three orders of magnitude, and the Stanton numbers were converged after a residual drop
of four orders of magnitude, the total pressure loss calculation required a drop in residuals of six
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orders of magnitude. In addition, when a spanwise-varying inlet total pressure profile was imposed,
a very small time step (one-fifth the size of the time step used in a constant inlet total pressure

calculation) had to be employed to enable the solution to converge. Naturally, using the small time
step increased the run time.
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Figure 4.23 Total Ptr..tmre Loss Through the UTRC LSRR First Statm:

(a) Coarse Grid�Constant Inlet Total Pressure Calculation,
(b) Coarse Grid�Measured Inlet Total Pressure Calculation, and

(c) Spanwise-Refmed Grid/Measured Inlet Total Ptr.ss'ure Calculation.

Thermal Results

A comparison between measured and computed midspan Stanton numbers is shown in Figure
4.2.4. The Stanton number is defined as

St ,= q
o. u. (T,- T,) "

Agreement between the prediction and experimental data is excellent.
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Stanton number contours for the airfoil surface are presented in Figure 4.2.5. The pressure

surfacc shows contour lines typical of a 2-D flow. The contours near the cndwalls arc attributed to

the assumption of fully turbulent flow within 20% of the cndwalls and not to secondary flows. The
suction surface heat transfer, on the other hand, exhibits effects of a 3-D flow except for a region on

either side of midspan which is primarily two - dimensional. Relatively high values of Stanton numbcr

and a stccp gradient arc sccn at the leading edge and transition location on the suction surface.
Additional regions of high heat transfer arc located downstrcarn of the leading edge near the cndwalls.

A very stccp gradient is noticed at that location. This rcgion coincides with the 3-D flow of the passage

vortices as thcy move from the cndwalls onto the airfoil suction surface.
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Stanton numbers for the endwalls are shown in Figure 4.2.6. The Stanton number contours

upstream of the stator are basically parallel to the airfoil leading edge. This pattern implies the

approach ofa 2-D boundary layer. An area of high heat transfer is located at the stator leading edge

where the passage vortices cause a rapid transport of fluid perpendicular to the endwalls.

Figure4.26 Predicted Stanton Number (St x 10 5) Contours for the UTRC
LSRR Fwst Stator Endwall&

(a) Hub,

(b) Ca n .

4.2.2 Langston Cascade

Langston cascade represents one of the best documented benchmark quality data for an airfoil

row representative of a turbine environment. Detailed aerodynamic experimental data were acquired

for this cascade by Langston et al. (1977) at the UTRC in a large scale low speed cascade tunnel with

three incoming profiles cons/sting of thin (1.8% of the span), nominal (13.6% of the span) and thick
(50% of the span) boundary layers. Surface heat transfer coefficient data were subsequently acquired

on this airfoil by Graziani et al. (1980) for the thin and the nominal inlet boundary layers. This cascade

was tested with an aspect ratio of 1.08 and a pitch to chord ratio of 0.955. Test conditions involved
ambient air entering the cascade at approximately 98 ft/sec. The Reynolds number based on axial

chord (11.08 inches) and inlet velocity was 565,000. Additional details are given by Langston and

Graziani. This test case was chosen to verify the loading, secondary flow and heat load prediction

capabilities of the code. A grid refinement study was conducted to determine the sensitivity of

predictions to grid points in the spanwise direction, The code was run with grids having ranges of 31
to 49 points in the spanwise direction for the thin inlet boundary layer. A line of symmetry condition

was imposed in the code for the nominal inlet boundary layer case and the code was run with girds

having ranges of 16 to 39 points up to the midspan. The calculations were conducted both in a

transitional and a fully turbulent mode. Most of the results discussed below were obtained with the

finest grid and with calculations conducted in a transitional mode,
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SurfaceStaticPressuresand SurfaceStreamlines

A comparisonofmeasuredandprediacclairfoil surfacestaticpressurcsisshowninFigures4.2.7
and4.2.8for thc thin and the nominal inlet boundary layer. Excellent agreement is shown bctwccn

experimental data and predictions. Figures 42.9 and 4.2.10 show a comparison of the measured and

prcdictcd surface static pressure cocfficicnts at the cndwall for the thin and the nominal inlet

boundary layers respectively. Exccllcnt agrccmcnt is shown bctwccn the data and predictions for thc
thin inlct boundary layer case. For the nominal inlet boundary laycr, howcvcr, prcdictcd results show

larger impact of secondary flows than cxpcrimcntal measurements indicating an overestimation of

sccondaryflows.
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Figures4.2.11 and 4.2.12 show a comparison of the measured and predicted strealdines on the
airfoil suction sides for the thin and the nominal boundary layer cases. This comparison also indicates

that whereas the thin boundary layer case is fairly well predicted; secondary flows for the nominal

boundary layer case arc overestimated which results in larger spanwise penetration of the separation
line on the airfoil suction surface.

Thin Inlet Boundary Layer
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Nominal Inlet Boundary layer
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of Grid Points in the Spanwise Direction has a Favorable Effect on the

A, netration Height at the Trailing Edge of the Airfoil Suction Side.

Secondary Flows and Total Pressure Loss

A comparison of the measured and computed total pressure loss coefficient at 10% axial chord

downstream of the trailing edge of the cascade is shown in Figures 4.2.13 and 4.2.14 for the thin and

the nominal inlet boundary layers. Excellent agreement is demonstrated for the thin inlet boundary

layer case for the shapes and levels of pressure contours. Predicted loss contours for the nominal
boundary layer case, although they show similar behavior as the experimental data, indicate a large

wake at the midspan and higher maximum total pressure loss coefficient than the experimental data.
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Predicted gap-averaged total pressure loss coefficients for the two inlet boundary layer cases

are compared to the experimental data in Figures 4.2.15 and 4.2.16. Overall agreement between data

and predictions is good except at the midspan for the nominal inlet boundary layer case. The

agreement between data and predictions should improve if additional grid points are used in the inner
grid and the effect of dilation induced by the secondary flow is accounted for through improvements

in the turbulence model as suggested by Sharma and Graziani (1982). Limitations of computer

storage available at the NASA MSFC CRAY-XMP computer did not permit further refinement of

the grid especially in the airfoil surface normal direction. The effect of grid refinement on the

predicted results was, however, conducted as a part of the NAVAIR contract #N00140-88-C-0677

at UTRC by Dorney et al. (1982) by using a version of the Rai code for the thin inlet boundary layer
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casebyutilizing theNAS super computers and large storage super mini workstations. Results from

Dorney's work. shown in Figure 4.2.17, indicate that almost 30% further increase in grid points are

needed to provide an accurate estimate of profile and secondary losses in cascades. Significant
improvements in computer resources, especially by using super workstations, have been achieved

since the present computations were conducted. Execution of reliable loss computations for turbine

cascades is now within the reach of design engineers. It should be pointed out here that the code gives

reliable results, provided the grid resolution is adequate.

Figure 4.215
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Surface Heat Transfer Coeflldents

Measured and predicted heat transfer coefficients at the midspan of the airfoil for the thin and

the nominal boundary layer cases are compared in Figure 4.2.18. The agreement between

experimental data and predictions is fairly good; this agreement should improve with an incr_

number of grid points in the surface normal direction as pointed out above and as demonstrated by

Dorney et al. (1992).

Dism'butions of Stanton number measured over the airfoil surfaces and cndwalls for the two

boundary layer cases are shown in Figures 4.2.19 through 4.2.22. Qualitative agreement is shown

between the experimental data and theoretical predictions. Improvements in turbulence/transition
models and increased number of grid points should further improve the agreement between data and

predictions.

Comparison of cx_rimental data with theoretical predictions shown in this section clearly
demonstrates the predictive capabilities of the Rai code. Lack of good agreement between the

experimental data and theoretical prediction can invariably be attributed to the limitations of grid

points used in the present effort. For engineering design execution, however, this code, cvcn with

limited grid resolution, provides excellent results which should allow use of the code in the design

execution process for optimizing airfoil rows in rocket propulsion systems.
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F_gure 4.221 Endwall Stanton Number Contours
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4.3 Tip Leakage Prediction Aspect of the Code

Although initial version of the Ral code (ROTOR3) allows computations in the tip clearance
region, these calculations did not provide stable results as noted by Rai (1987). Tip clearance levels
urea in computations by Madavan et al. (1989) were lower and by Dorney et al. (1992) were larger
than the experimental results to yield stable overall solution. A study was conducted in the present
program to verify the tip leakage flow prediction capabilities of the code.

Flow was simulated in the Langston cascade with tip clearance flows on one of the endwalls.
Eaperimental data was available from this configuration from detailed measurements conducted by
Dlshan and Moore (1989). Computations were conducted with 39 points in the spanwise direction;
which included 9 grid points in the tip clearance region containing 2.1% of the span. Initial calculations
indicated insufficient grid resolution to resolve the overall flowfield but limitation of available
computer storage space, on the NASA MSFC CRAY-XMP computer, did not permR inclusion of
additional grid points. The calculations were, therefore, run to convergence to establish the level of
accuracy achieved for the tip flows.

A comparison of measured and predicted strealdines near the tip endwall for this configuration
is shown in Figure 4.3.1. The predicted results yield fairly accurate description of the flow behavior
near the endwalls. Separation and reattachment strealdines are fairly accurately predicted by the
code; migration of flow from the pressure to the suction side is also well predicted. Measured total
pressure loss contours 40% of the axial chord downstream of the cascade are compared to the present
theoretical predictions in Figure 4.3.2. The predicted results indicate a stronger endwall passage
vortices than measured results, these results are similar to the ones discussed in the previous
subsection for the nominal inlet boundary layer. The predicted secondary flow structures tend to
merge into a high loss region which affects the convection of the tip leakage vortex. Distinct tip leakage
vortex is, however, predicted as indicated in Figure 4.3.2 at the 10% and the 40% axial chord locations.
The predicted tip clearance vortex is smaller than the experimental data primarily due to the influence
of larger than measured secondary flow structures. This exercise indicates that the code with a larger
number of grid points in the spanwise direction will provide accurate simulation of tip clearance flows.

It should be pointed out here that the tip clearance flows are dominated by inviscid migration
of flows where the viscosity plays only a limited role. This point is illustrated in Figure 4.3.3 where the
flow in a low turning cascade CYaras et al. (1989)) was simulated by Staubach (1990) by utilizing an
Euler code with 51 grid points in the spanwise direction. Good agreement between the measured data
and Euler predictions demonstrates the need m use an increased number of grid points for tip
clearance simulation; the need to account for viscous effects is not as important as originally
anticipated.
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Fg,ure 4.3.3 31) Euler Calculation with 3J Grid Points in Spanwise

Direction Can Resoiw T_p Leakage Vortex (Staubach (1990)).

4.4 Unsteady Flow Prediction Aspect of the Code

In addition to predicting the time-averaged loadings, surface streaklines and total pressure
losses, an unsteady code must provide predictions of the following four well established unsteady flow
features to ensure its proper verification:

• unsteady pressure amplitudes on airfoils

• segregation of hot and cold air in rotor passages

• periodic elimination of rotor secondary flow vortices

• unsteady variation in the transition point on downstream row airfoils and
unsteady loss variation

A number of simulations have been conducted in literature by using the code used in the present
program to demonstrate its predictive capabilities. Results from some of these simulations are

discussed below to provide evidence of the code verification.

Rai (1987,1989),Rai and Madavan (1988)and Madavan etai(1991)have provided sufficient

comparisons with experimentaldata to demonstrate thatthe code provides accurate estimatesof

time-averaged flowsfora turbinestage.Most detailedresultsforthe LrrRc LSRR were obtained

by Madavan etai(1991)by usingalmost 1.43milliongridpointstosimulatethree-dimensionai flow

through 3vane and 4 blade passages;the experimentalrigcontains22 vanes and 28 blades.Madavan

et ai.(1991)compared theirresultswith those obtained by Madavan etal.(1989),which used 0.41

milliongridpointsand utilizedIvane and I bladeto simulatethe flowthrough thesame rig.Results

from thesepublications,shown inFigures4.4.1through4.4.4,clearlydemonstrate thatthecode,with

multi-passage simulation,providesveryaccuratepredictionsfor:

• spanwisc distributionof time-averaged airfoil loadings (Figure4.4.1),

• amplitudes of unsteady pressures at miclspan (Figure 4.4.2),

85



• time-averaged strcaklincs on airfoil surfaces (Figure 4.4.3), and

* t/me-averaged total pressure loss contours at the exit of the vane and the blade

(Figure 4.4.4).
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The muitipassage simulation, conducted with 51 spanwise grid points and with correct tip

clearance levels also captures the tip leakage vortex structure which was not previously captured with

a smaller tip clearance level by Ral.

Pressure sides of turbine rotors operating in the presence of circumferendally inlet temperature

profiles tend to have higher surface temperatures on the airfoil pressure sides than the
time-averaged temperature at the rotor inlet. This flow phenomena, experimentally documented by

Butler et al (1986), Sharma et al (1990) and Roback and Dring (1991), illustrates that the hot and cold
stream of fluid tend to segregate in a turbine rotor. A number of unsteady numerical simulations (Rai

and Dring (1990), Ni et al (1988), Ni and Sharma (1988), Krouthen and Giles (1988), Dorney et al

(1991,1992), Takahashi and Ni (1990,1991) have been conducted to predict this flow phenomena. One
of the most accurate simulations of this effect was conducted by Dome),, Davis and Sharma (1991)

by using a 2D version of the code used in the present program. Results from this publication dearly

demonstrate that segregation of hot and cold fluid in turbine rotors is an unsteady two-dimensional

phenomena and it is well predicted by the code used in the present program as demonstrated by

excellent agreement between experimental data and theoretical predictions in Figure 4.4.5.
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Figure 4.4.5

ii | nl i

O mgqEmldENTAkDATA

.____ NUMERICAl,8IMULATiQNS

SUC'YIOH I,_DI.I_G PRE$$1.'i'¢E
SIDE EDGi_ SIDE .

' _0 ' ll',0 14.0 .",
S

A Radially Uniform Incoming Two-Dimmsional Hot Streak
Yields Higher Surface Temperature on the Pressure Side and Lower
Ton_ ont_ Suction$i_ (Dom_ etaL(1001))In4_ing
SegregationoftheHot and ColdAirinTurbineRotors.

Periodic elimination of the rotor secondary flow vortices due to the interaction between the

upstream vane and the downstream blade flowfield, experimentally documented by Sharma et al.
(1983), was initially envisioned to be viseous effect. Unsteady, three-dimensional flow simulations
conducted by an inviscid Euler code, however, were found to be sufficient to predict this flow feature
as indicated in Figure 4.4.6 from Ni and Sharma (1989). It can, therefore, be safely concluded that an
unsteady Navier Stokes code (like the one used in the present program) will predict this phenomena.
Further expensive simulations are not needed to demonstrate this prediction capability. Review of
existing numerical results from Madavan et ai (1991) should clearly illustrate this flow behavior.
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Fisure 4. 4. 6 RelativeTotalPressureatExitoftheRotorfrom Both theUnsteady

Simulationand _rimental Data IndicateThat the Unsteady

Euler Code (Ni & Sharma (1990)) is Suffwientto Predict

_timental Behavkn:.

Periodic variation of the onset and the extent of transition has been observed by Pfeil & Herbst

(1978), Doorley and Oldfield (1984) for an unsteady flow simulation in a linear cascade and by Hodson

(1983) in a turbine rotor. This phenomena is most pronounced in moderate and low Reynolds number

flow situations in the turbine and it should have little effect on the rocket turbines where Reynolds

numbers are very high. An unsteady transition model has been implemented in the present code as

discussed in Section 3 of the present report. Flow simulations were conducted for the UTRC LSRR
by using this transition model. Large leading edge overspeed for the rotor, however, always tripped

the boundary layer to a turbulent state. This effect, therefore, cannot be illustrated in this subsection
of the report. Code application results shown in Section 5.2 do, however, discuss the impact of this

phenomena on the overall unsteady and time-averaged losses.

Two- and three-dimensional flow simulations were conducted in the present program for the

UTRC LSRR rotor. Measured flow properties from the upstream stator (vane) were specified as inlet

boundary conditions. Results of the two-dimensional calculations are similar to those obtained by

Rai (1987) and Madavan et al. (1991) and some of these results are shown in Figures 4.4.7 and 4.4.8.

Three-dimensional flow calculations were also conducted for the rotor by using a uniform upstream

and measured upstream boundary conditions from the stator exit. Limitations of the available
computer storage on the NASA MSFC XMP contained the spanwise grid density to 39. In addition,

a fully converged solution has not yet been achieved so the results are not discussed. Even converged

results from these simulations are not expected to be any superior to those obtained by Madavan et
al (1991) because of fewer number of grid points used in the present simulation. It should, however,

be pointed out that verification of the unsteady flow predictive capabilities of the code has been

demonstrated by results shown in this section.

In summary, results shown in this section dearly demonstrate the predictive capabilities of the

code used in this program. The code provides accurate estimates of losses, heat loads, loadings"

unsteady pressure amplitudes, secondary flows, tip leakage vortices and segregation of the hot and
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cold air in turbine passages. The only requirement for accurate predictions is proper grid resolution
and computer resources to ensure convergence of calculations.
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5. CODE APPLICATION

The verified CFD code was applied to simulate flow through two configurations to demonstrate

that it can be used to compute the flow through both axial and radial turbomachines. This exercise

indicates that the CFD code developed under the present program can be applied in the design

optimization studies for rocket turbopumps to yield high performance and improved durability
hardware. The results obtained from this exercise are discussed below.

$.1 Railly's Radial Impeller

Raillfs impeller (Ekerol & Railly (1982)) was selected as one of the configurations in the code
application task of the program to show that the code will provide accurate estimates of flows in radial

(centrifugal) machines. This impeller is a low speed radial cascade with an outer diameter of 45 inches

as shown schematically in Figure 5.1.1. Air enters this impeller radially after passing through a

vaneless inducer which directs the flow from the axial to the radial direction. Large contraction in the

inducer ensures uniform flow at the impeller inlet. The pitch to chord ratio of the impeller is 0.78 and

the Reynolds number, based on radial chord (7.72 inches) and an exit relative velocity of 433,000. The

span of the impeller is constant (3.5 inches). The airfoils are shrouded to ensure absence of leakage
flows.

Rig scPam'_atics

h"--k'-_

__,__.__.___. !

!

i
I

Figure 5.1.1 Code Application - RaiUy's Impellee.

Calculations were conducted in a fully turbulent mode by assuming a two-dimensional flow at

the mid-span; effects of endwall boundary layers were accounted for through the use of stream- tube
contraction ratio. Computational grids used in the code are shown in Figure 5.1.2. Predicted

streaklines indicate separation of the flow on the airfoil suction side as indicated in Figure 5.1.3.

Measured boundary layer thickness distribution along the airfoil suction side is shown in Figure 5.1.4.

Experimental data indicate a large gradient in the boundary layer thickness around 66% of the chord
on the airfoil suction side which is in close proximity of the onset of the separation zone predicted by

the code (Figure 5.1.3) This comparison indicates that the code provides an accurate estimate for one

of the most dominant features of the flowfieid in radial impellers. Three-dimensional flow

simulations were also initiated for this impeller; the solution was, however, not run to convergence

due to the unavailability of computer resources.
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Measured boundary layer

FRure S.L 4 Code Application - RaOly's Impeller

(21) Steady Calculation).

5.2 Pratt & Whitney Full Scale Turbine

This configuration was selected to demonstrate that the CFD code used in the present program
provides a more accurate estimate of unsteady loads on airfoils than the Euler code; the latter code

is extensively used in the current design process for turbomachines.

The need to establish the relative accuracy of the unsteady loading prediction capability of an

Euler and a Navier-Stokes code became apparent in the design of the Space Shuttle Main Engine
(SSME) alternate turbopump development (ATD) high pressure oxygen turbopump (HPOT) and

high pressure fuel turbopump (HPFTP) turbine blades. Analysis of the first stage blades of each
turbine indicated possible resonance problems in crucial operating ranges of the turbopumps.

Unsteady aerodynamic simulations were conducted for the two turbines (Griffin & Rowey(1993)) to

support further investigations of the dynamic responses of the first stage turbine blades. These
simulations were conducted at the mean radius of the two turbines by utilizing two dimensional

unsteady Euler (Ni et al (1990)) and Navier Stokes (Gundy-Burlet et ai(1991)) codes. Both codes
were found to yield almost identical time-averaged loadings. Unsteady axial and tangential loadings
for the first blades of the two turbines were, however, found to be very different as shown in Figure

5.2.1, which also shows a comparison of the time-average loadings for the two first blades. The

unsteady loads predicted by the Navier-Stokes code were almost an order of magnitude larger than

those predicted by the Euler code. The main objective of the present application is to evaluate the

unsteady loading prediction capabilities of the unsteady Euler and Navier Stokes codes for a subsonic
axial flow turbine.

A brief discussion of the experimental turbine rig, where appropriate data are available to verify

the predictive capabilities of the two codes, is given below.
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F'gum 5.21 Nummical Simulations Conducted For The HPOT And HPFTP

Unsteady F_,ulerAnd Navier-Sto_ Codes Show:

I) Almost Identical 2T_ne-averaged Loadings; But
II) Smaller Unsteady Loads From The Euler Code Than Those

From The Nave, r-Stokes Code.

Experimental lug

The experimental rig consists of a two stage turbine operating at an overall pressure ratio of 4.5
and a Reynolds number of about 700,000 for the first stage stator. The schematics of the rig and
measurement locations are shown in Figure 5.2.2. Airfoil surface static pressures are measured at

various spanwise locations for all airfoil rows. Overall two stage turbine performance is measured by

traversing the flow at the exit of the turbine, using pressure and temperature rakes in four quadrants.

Leading edge Kiel head probes at the second stator inlet are used to define the first stage performance.

Unsteady total pressure data are acquired downstream of the turbine to quantify interaction between
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airfoil rows. Laser Doppler Vclocimetry (LDV) is used to acquire unsteady velocity data in between
the airfoil rows.

AIR FLOW

=1l
40

LDV MEASUREMENT PLANES--P. I 2t '_

iTRA.SOUCERSVANEMEA.STATIC.TAPI 

Suction Surface @ x/bx =, 0 15, C 50, 0 87 _.._//_[

Pressure Surface @ xJbx - 0.40, 0.85, 1.00

3

F_ 5.22 SchematicsoftheTwo-Stage TurbineRigAlong VPuh the
Measurement Locations.

Unsteady surface static pressures were measured at several locations at the mid-span of the

second stator. The measurements were obtained using infinite tube probes coupled to conventional
airfoil surface static pressure taps. The infinite tube probe technique permits unsteady measurements

to be made on the surface of the airfoil without altering the surface contours, as would be required

with the installation of surface mounted high-response pressure transducers. It also removes the

transducers from direct contact with the flow field, thus providing a more durable high-response
instrumentation system.

In this application, the unsteady static pressures were obtained at six locations in a stator
passage. Measurements were made at 15%, 50%, and 87% chord on the suction side of one airfoil and

at 40%, 85% and 100% chord on the pressure side of an adjacent airfoil. The infinite tube probes were

located outside the turbine case 16 to 20 inches from the pressure taps, resulting in a usable frequency

response of up to 11 kHz at the rig operating pressures and temperatures. This is above thc rotor blade

passing frequencies of 6 to 7 kHz but not adequate to capture any higher harmonics. (Note: work is
currently in progress to reduce the sense tube line lengths to improve the response of the probes to

ovcr 20 kHz).

To determine the pressure fluctuations at the airfoil surface measurement location, the data

from the infinite tube probes must be compensated for the attenuation and phase shift in the

connecting lines. "l_,pically, one hundred revolutions of data are acquired for each test point. Each
revolution of data is then frequency compensated using the technique described by Nyland et al(1971).

The compensated data is then ensemble averaged to produce the average periodic and random

components of the data for one rotor revolution. Levels of periodic unsteadiness are obtained by

examining the fluctuations of the periodic signals and levels of random unsteadiness are obtained by

examining the mean levels of the random signals.
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Solution Procedures (CFD Codes & Models)

Eubr C_

Thr_ dimensional mulflsutg¢ unsteady Elder flow solver, developed by Ni (1989,90), is used to
conduct invisc/d numerical simulations. This solver utilizes an cxplic/t timc-accuratc finite volume
numerical scheme with the cell-vertex ccntcrcd solution algorithm to integrate the unsteady Eulcr
equations to providc a solution for flow in mult/stagc turbomachincs. The scheme is second ordcr
accurate both in time and space on a smooth computational mesh. Detailed numerical equations for
implcmcnting the schcmc and mcthods for applying various types of boundary conditions arc given
in Ni ct a1(1989). For time-accurate simulations of multistage flow, a cubic interpolation mcthod is
used for transfcr of flow information across the intcrfacc boundaries dividing stationary and rotating
airfoil rows as discussed by Ni ct al (1989,90). A surface drag force modcl similar to the one dcs_bcd
by Denton(1990), is used to provide the effect due to viscosity near airfoil and cndwaU surfaces. Thc
boundary conditions applied for the present simulations are flow tangency on solid surfaces,
prescribed spanwise and tangential dism'bufions of total pressure, total temperature and flow angles
at inlet to the multistage turbine. The number of grid points used in simulations and their distributions
along with the operating conditions arc given in Figures 5.23 & 5.2.4 for the two- and
three-dimensional simulations.

F_u'e 5.23 Computational Grid Used w Simulme Two-D_aL_ Unsteady
Flow 7hwush :he Ftrst Rotor and Second Sin:or o[ :he P_.
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F_,ure 5.2.4 ComputationalGrid Used to Simulate Three-Dimensional Steady and

Unsteady Flow Through the Multistage Two-Stage Rig by Using the
Euler Code.

Navier-Stokes Code

Two-dimensional version of the three-dimensional unsteady Navier Stokes code, developed

by Rai (1989), is used to conduct the viscous numerical simulation. The numerical procedure consists
of a time marching, implicit, third order spatially accurate, upwind, finite difference scheme. The

inviscid fluxes in the code are discretized according to the scheme developed by Osher (1982). The

viscous fluxes are calculated using standard central differences. An alternative direction.

approximate-factorization technique is used to compute the time rate change in the primary
variables. In addition, an inner Newton iteration is used to increase stability and to reduce

linearization errors. The code is modified to account for the 'stream-tube' ('H-Ratio') effects in a

manner proposed Rangwalla et al (1991).

The two-layer Baldwin-Lomax (1978) turbulence model is used to compute the turbulent

viscosity. This turbulence model is modified to account for the transitional nature of the airfoil suction

surface boundary layer by using the intermittency factor approach suggested by Shanna (1987).
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Modified Turbulent Viscosity = F * Tarbulent Viscosity B-L

F = Intermittency Factor

--- 1.-exp (-(R0**2.$-R0c**2.5))/R0c**2.68)

R0 = Reynolds Number based on momentum loss thickness of the airfoil boundary layer

R0c = Critical Reynolds Number = 40/Tu**0.5

Tu = Free stream turbulence level

Free stream turbulence level is calculated by using entropy value at the edge of the stator
boundary layer. Circumferential variation of flow properties at the interface between the rotor and
the second stator is used to determine a relation between entropy and turbulence for application in
the second stator. Turbulence level is specified as an input value to the rotor.

Multiple zonal grids are used to discretize the rotor/stator flow field and to facilitate relative
motion of the rotor (Rai(1989)). A combination of O- and H-grid sections are generated in the
blade-to- blade direction extending upstream of the rotor leading edge to downstream of the stator
trailing edge. Algebraically generated H-grids are used in the region upstream of the leading edge
to downstream of the trailing edge and in the inter blade region. The O-grids, which are body fitted
to the surfaces of the airfoils and generated by using elliptic solution procedure, are used to properly
resolve the viscous flow in blade passages and to facilitate application of algebraic turbulence models.
Computational lines within the O-grids are stretched in the blade-normal direction with a fine
spacing at the wall Figure 5.2.5 illustrates the grid topology used in the present simulation. Boundary
conditiom used in the current simulation are no slip condition on solid surfaces; prescribed spanwise
and tangential distributions of total pressure, radial and tangential flow angles; and Reimann
invariant at the inlet; prescribed static pressure at the exit.

F:gure 5.25 Computational Grid Used to Simulate Viscous Flow Through the
Rotor and the Stator by Using an Unsteady Navier- Stokes Code.
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Discussion of Results

Unsteady two-dimensional flow simulations were initially conducted to evaluate the steady and

unsteady loading prediction capabilities of the Euler and the Navier-Stokes codes. Predicted

envelope of unsteady surface static pressures on the stator from these simulations are shown in Figure
5.2.6. It is apparent from this figure that the Navier Stokes code predicts larger magnitudes of unsteady

Wessures than the Euler code over the entire airfoil surface. This result is similar to that obtained in

ATD turbines as shown in Figure 5.2.1. A comparison of the experimental data with predicted results
indicates that even the Navier- Stokes code underestimates the unsteady pressures on the airfoil. In

addition, analysis of numerical results indicates that the two-dimensional simulation of the turbine

has yielded a lower inlet Mach number and a larger negative incidence angle for the stator than these

were present in the experiment.

i ST'r.AOYDATAUNSTEADY DATA(AMPt.ITUDE)

..... SIMUlATiONS

20 EUtJ_ 21) NAWER4tTOttF.S

e }"----. _,........... "_:":-'..l/o |',<:..,

! o,. ,
0.0 Nonmdlzd_l Axial Dlshmco IA O.l Normalized AxtlII DIMam¢o 1.0

Figure 5.2 6 2fro-Dimensional Unsteady Flow Simulations Show La_er Leveb

of Unsteadiness From The Navies'- Stokes Code Than Those From
The Euler Code. Both Simulations, However,, Do Not Accuratety
Model The Inlet Condition To The Stator.

A review of the steady three-dimensional multistage Euler flow simulations of the entire two

stage turbine showed that the mid-span region of the second stator was strongly influenced by the

endwall secondary flows and fiowpath divergence. These steady simulations yielded excellent
agreement with the time-averaged loadings on airfoil surfaces, predicted results at the mid-span of

the first rotor and the second stator are compared to the experimental data in Figure 5.2.7. Unsteady
three-dimensional flow simulations were then conducted for the two stage turbine using the Euler

code. Predicted envelope of unsteady pressures for the second stator from this simulation is shown

in Figure 5.2.8, amplitudes of measured unsteady pressures are also identified in this figure. Results

shown in this figure indicate that the 3D Euler code predicts larger amplitudes of unsteady pressures

on the second stator than the 2D code primarily because it provides more realistic inlet flow conditions

to the second stator. The predicted magnitudes of unsteady pressure are, however, still lower than the

experimental data.
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F'_p_e 5.2. 7 Tkree-Z)bnensionol Steady MultistageFader Code Yields Good
Agreement withtkeAirfoiIL oadingData fortheRotorand theStatm

F,_e 5.2.8 Three-DimensionaI MultistageUnsteadyEulerCode PredictsHigher

UnsteadinessThan the2£)Code, But itStillUnderestimatesUnsteady

l'mmoe Amplitudes on theAirfoilSuctionSide.

One is tempted to conclude at this stage that only a 3D unsteady Navier Stokes code can provide
accurate predictions of unsteady pressures in this experiment. Computational resources required to
cxccutc a 3D unsteady Navicr Stokes for this configuration arc, however, proldbitivc. The approach

undcrtakcn in the present investigation was to use thc two-dimensional unsteady Navicr Stokes codc
which was modified to account for the cndwall flow cffccts through the use of'steam tube' (H-ratio)
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variation. The distribution of stream tube variation was calculated from the numerical results

obtained from the 3D steady multistage ELder flow simulation.

Steady two-dimensional flow simulations were first obtained by using the cascade version of the

unsteady Navier Stokes code for the rotor and the stator with the'H- ratio' variation calculated above.

Calculated airfoil surface static pressure distributions from these cascade simulations are compared

to the experimental data obtained by using steady pneumatic instrumentation in Figure 5.2.9. Good
agreement is shown between the experimental data and predictions.
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F_,ure 5.29 Steady Loadings on the Rotor and the Second Stator Well Predicted by 2D

Steady Hav_,r Stokes Code Modified to Account for "H-ratio" Effect.

l_vo-dimensional unsteady flow simulations were then conducted for the rotor and the second
stator by using the 2D Navier Stokes code modified for the 'H-ratio' effect. The predicted envelope

of unsteady pressure from this simulation for the suitor is compared to the experimental data in Figure
5.2.10. Measured amplitudes of unsteady pressures are also identified in this figure. Good agreement

between the unsteady experimental data and predictions for the stator clearly demonstrates that a

Navier-Stokes code is needed to estimate unsteady loads in turbine rows. This result also shows that
a two-dimensional code, modified to account for 'H-ratio' effects, is a cost effective alternative to

three-dimensional unsteady Navier Stokes codes, at least for estimating the levels of unsteady loads
on airfoil surfaces.
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Figure 5.210
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2I) Unsteady Navier-Stoke_ Code with "H-turk)" Modifications;

Amplitudes of Unsteady Ptesmsr.s on the AirfoU Suction Side Fairly
WdlPre.dicte.d.

Numerical results from the above unsteady flow simulation were processed to establish the levels

of unsteady losses for the second stator as it was affected by the unsteady mteraction with the upstream
rotor. Periodic variation in the loss for the second stator is shown in Figure 5.2.11. The second stator

is found to yield almost 50% higher time-averaged loss in the unsteady flow environment than the
loss calculated for that airfoil in a steady flow environment. The predicted in.ease in the

time-averaged loss for this airfoil is similar to that measured by Hodson (1983) as shown in Pigure

5.2.12. The predicted periodic variation in unsteady losses is similar to those experimentally measured
for the second stator in the UTRC LSRR as shown in Figure 5.2.13. Results from this application

indicate:

• An unsteady Navier Stokes code provides a more accurate estimate of unsteady

loads in a multistage turbine environment than an Unsteady Euler code.

2D unsteady Navier Stokes codes, modified to account for 'H-ratio' effect, are
a cost effective alternative to more expensive and computer intensive 3D

unsteady Navier Stokes codes to estimate unsteady loads in turbines.

Time-averaged losses for airfoils in an unsteady flow environment are larger
than estimated for those airfoils in a steady flow environment and unsteady

Navier Stokes codes can model this flow phenomena accurately.
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Figure 5.2.11

Ul

I,I

U

It_..

, "°°.°%

. ,..

! I
.°

I

°°

w_.Dmm

Two-Dimensional Unsteady Navier-$tokes Code Predicts Periodic

Variation in Loss for the Stator as it is Influenced by the Upstream Rot_
Tone-averaged Loss for the Stator is Almost 50% Larger Than

Calculated for this AirfoU in a Steady Flow Environment.

0003[ DATA
• ROTOR /

O CASCADE / •

o_o_[ CAU.CU_TIONS /
. _TURBULENT /"

NORMAHZED I "''TRANS_TK_AC _MOMENTUM

I / ° .-"

o
o lO

NORMALIZED STREAMWISE DISTANCE
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Momentum Loss Thickness (Hodson (1983)) Show l.,mger Values For
Rotors (Unsteady EnvironmenO Than Those Measured For The Same

Airfoil Sections In a Steady Cascade Environment. The Rotor Data Are

Bracketed By The T[an_ional and Fully Turbulent Calculations (Shanna

et_ (1988)).
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6. CONCLUSIONS AND FUTURE DIRECTION

CFD code developed by Rai (1987) at NASA ARC has been modified to account for transitional

flows on airfoil surfaces. Improved turbulence models have been implemented in the code to facilitate

account of physical phenomena such as surface roughness, rotation, turbulence level and extra rates
of strain on the development of viscous flows in turbopumps. This code has been shown to yield good
estimates of:

Airfoil loadings, heat loads, losses and secondary flows in a two- and a

three-dimensional steady flow environment (Griffin and Belford (1990),

Griffin et al. (1990)).

• Tip leakage flows.

• Unsteady loads, time-averaged loadings and fiowfield in an unsteady flow
environment.

• Unsteady variation of losses and increased time-averaged loss than measured
for airfoils in a steady flow environment.

• Flow separation in a radial impeller.

Grid sensitivity studies conducted, in the present program and those conducted by Dorney et al.

(1992) by using a version of the present CFD code, indicate that almost 550,000 grid points are needed

to accurately estimate profile and secondary losses in turbines.

Studies conducted in the present program and those conducted by other investigators using

versions of the present code can predict following known effects of unsteadiness in turbine stages:

• Segregation of hot and cold air in turbine rotors (Dome),, Davis and Sharma
(1990)).

• Periodic elimination of rotor secondary flow vortices in a turbine stage (Ni and

Sharma (1990)).

Amplitudes of uusteady pressures in a turbine stage (Rai and Madavan (1989)).
Present code yields more realistic estimates of unsteady loads than an unsteady

Euler code (Sharma et al. (1992)).

Time-averaged losses are higher in an unsteady flow environment than

measured for the same airfoil in a steady flow environment (Sharma et al.

(1992)).

Future work in this area needs to focus in numerical investigations to isolate and identify loss

generation mechanisms to provide guidance to designers. These investigation may focus on

identifying:

• Loss production mechanisms due to secondary flows in airfoil rows.

• Loss production and control mechanisms due to tip leakage flows.

• Loss production due to steady and unsteady flow interactions in multi-stage
machines.
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Foreward and Summary

This Document is a manual describing the use of a 3D Navier-Stokes flow

solver, RAI3DS, which was developed under NASA Contract NAS8-36950,

"Three Dimensional Turbopump Flowfield Analysis". The Program Managers
of this contract are Lisa W. Griffin, of NASA/MSFC, and Dr. Om P. Sharma, of

Pratt & Whitney Aircraft. This Document accompanies the final report of the

contract, in which the methodology of the solution algorithm is presented. The

focus of this manual is the mechanics of using the system, accompanied by

some samples ofjobstreams, input, and output. Some details of major modifications

made to the original version of this program, ROTOR 3 (M. M. Rai, NASA/Ames,

1987) are also included.



Overview of RAI3DS System

The purpose of RAI3DS is to solve for the flow through a turbopump. It is the
result of work in support of NASA Contract NAS8-36950, the main tasks of which
were to verify, enhance, and apply the three-dimensional, unsteady Navier-Stokes
flow solver ROTOR3, written by Man Mohan Rai, NASA/Ames. ROTOR3 was

designed for a specific experimental single-stage axial turbine, for which it gave good
predictions of the experimental data 0tef. 1). In order to utilize the predicitve
capability of ROTOR3 as a turbomachinery design tool, modifications were necessary
to make the code applicable to general cases, and also to reduce the computational
resources required for its execution. As a result of this work, RAI3DS will solve for
one, two, or three airfoil rows, up to four airfoils in each row, in two or three
dimensions, with or without tip clearance, planar or annular, steady-state or unsteady.
It can also be applied to radial flow machines as well as axial. Additional features
include capability for imposing a line of symmetry condition in three-dimensional

axisymmetric cases; the option to model stream tube contraction effects in
two-dimensional cases; and the capability for specifying an incoming wake and/or

boundary layer.

RAI3DS consists of three major modules: the grid generator, the flow

initializer, and the flow solver, each having different forms of input and output. The

grid generator and flow initializer run on the Ms workstation, and the solver runs on

the Cray-XMP. In addition, there is a shell script, run on the Iris, that generates the

UNICOS job stream needed to run the flow solver on the Cray. Each of these

modules are explained in detail, including sample input and output, in the following
sections of this manual.
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Grid Generator

The solution scheme of the RAI3DS flow solver requires two overlaid grids for

each airfoil. A dense inner grid surrounds the airfoil with lines normal to the surface,

and is overlaid by a less-dense outer grid of horizontal and vertical lines extending to
the boundaries of the solution domain. Between each airfoil, the outer grids are

slightly overlaid at the interface. This grid scheme is explained in more detail by Rai

(Ref. 2), but here is an example of a radial cross-section of a stage with rotation about
the X-axis:

Y

X

t_

In actuality, the outer H-grid extends throughout the solution domain; the innermost

portion is not shown here so as not to obstruct the view of the inner O-grid. The grids
are stored in Cartesian coordinates, with X-, Y-, and Z- coordinates for each node,

represented by (I,J,K). For the outer grids, I varies with X and J varies with Y; for

the inner grids, I varies with airfoil circumference and J varies with distance from the

surface; K varies with radius,which is normal to the page.

The procedure to generate these grids is as follows: for each airfoil, the outer

H-grid is generated first, it's boundaries in the Y-direction following the curve of the

airfoil's camber line, which is generated from the X-Y coordinates of the airfoil

surface. The outer boundary of the inner O-grid is then generated, and the O-lines are
distributed from the airfoil surface out to the boundary. The O-lines are connected
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with lines normal to the airfoil at the surface and curving out to the boundary. This is
done at five spanwise locations, and then repeated according to the user-specified
radial distribution of the grid. For planar cases, the grid is then "unwrapped" at each
radial location so that each grid plane has a constant Z-value. For 2-dimensional
cases, all grid planes except that at midspan are eliminated, and the midspan grid
plane is copied twice, forming a grid of three identical planes at three different
Z-locations. For radial cases, the planar grid (i.e., having constant Z-values at each
X-Y plane) is transformed to curve around the Z-axis, as shown here:

X

For three-dimensional caseswith rotation, RAI3DS will solve for the flow over
the tip of the rotor, requiting an extra grid for the clearance region. This grid is also
an O-grid, having as its outer boundary the edge of the rotor tip and as its inner
boundary an "O" collapsed into a line. The O-lines are connected by lines that are
normal to the airfoil surface in the X-Y plane, which are extensions of the normal
inner grid lines:

The above shows the first few lines of the inner O-grid meeting with the tip clearance
grid at the airfoil surface. A tip clearance grid is generated at each grid plane above
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the tip of the rotor, for which the radial distribution is specified by the user.

For some unsteady cases, it is advantageous to use a small H-grid to represent
the exit section of an airfoil row, rather than solve for the entire row. This is what is

referred to as a "pseudo-airfoil" both in this doeurnent and in the RABDS system

codes. The feature was added for the purpose of simulating first rotor interaction with

the wake coming off of a first stator, without having to compute the flow through the

first stator. A small, stationary H-grid was generated to represent the exit section of

the first stator, and a wake was defined at the inlet and held as the boundary condition.

The rotor grids were then moved past this small stationary grid just as they would if
there had been a full stator grid upstream of them. This type of simulation saves on

computation as well as storage requirements, but is only applicable to cases in which

there are no unsteady effects present at the location of the inlet to the pseudo-airfoil

grid. Here is an example of a pseudo-stator grid preceding a rotor grid:

location of
statex a'ailing edge

The program requires the following input: the geometry of each airfoil, in X-Y

coordinates, at several spanwise locations, the radius at which each of these is defined,

the number of blades in each row of airfoils (i.e., the total number of airfoils in the

disk), and the upstream and downstream boundaries of the solution domain of each

airfoil, although these are subject to change during execution of the program. For

each airfoil, this information is read in, and the user is prompted for information to

tailor the grid to satisfy the requirements of the particular case. The user will have the

opportunity to change grid density in all three directions, scale the airfoils relative to

one another, and change upstream and downstream boundaries. Obtaining the

optimum grid for a case generally requires several iterations of the program, even for

those familiar with the effects of changing each variable. For this reason, the

generated grid is output in a PLOT3D-readable file to allow the user to view the grid
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and determine the necessary modifications, if any.

To best explain the various options available, a sample run is presented with

detailed explanations accompanying each user prompt. This sample is a 3D, planar

rotor with tip clearance, its geometry being the same as the first rotor of the United

Technologies Research Center Large Scale Rotating Rig (LSRR) (Ref. 3), and a

pseudo-stator, meant to demonstrate nearly all possible options of the code.

Obviously, much of this would be bypassed in a simpler case. The input file, the

format of which is described at the end of this chapter, is expected by the program to

be in FORTRAN unit 2. This is the only necessary file assignment, and the user may

then invoke the program.

% grd3ds

ENTER 1 FOR A RADIAL IMPELLER CASE, RETURN FOR AXIAL

HOW MANY FULL AIRFOIL ROWS ?

1

This is the number of full airfoil grids you want m generate, regardless of whether

you want a pseudo-airfoil grid upstream. You must have coordinates for this

number of airfoils in the input file.

ENTER TYPE OF 1ST FULL AIRFOIL ROW, I=STATOR, 2=ROTOR

2

"1st" means leftmost.

PSEUDO-AIRFOIL UPSTREAM ? (O-NO, 1=YES)

1

2D OR 3D? (ENTER '2' OR '3')

(NOTE 3D IMPLIES TIP CLEARANCE IF SOLVING FOR A ROTOR)

3

Note that if you want to solve for a stationary airfoil with tip clearance, refer to it

as a rotor and define rotation speed to be zero (this is done later).

PLANAR CASE? (O=NO,I=YES)

1

This applies to 2 or 3 dimensions.

ENTER NMBR OF AXIAL POINTS FOR PSEUDO-AIRFOIL GRID, 12

10

ENTER JMAX FOR PSEUDO-AIRFOIL GRID, 12

28

The spacing in the Y-direction in the pseudo grid should be as close as possible to

that of the neighboring airfoil grid; this will depend on the pitch ratio of the rows.

2.4



ENTER 1 TO CHANGE AIRFOIL 2 K-PLANE MESH DIMENSIONS

(INNER: 101,21 DSBOD = .0005

OUTER: 50,31

TIP: 101,11)

1

The above are defaults.

ENTER IMAX (AXIAL PNTS) FOR OUTER GRID, FORMAT=I2

(DEFAULT--.50, MAX=61)

ENTER 1 TO CHANGE IBEG AND lEND, OR RETURN

1

This allows changing the axial boundaries of the inner grid relative to the airfoil.

ENTER % AX CHORD FOR IBEG AND lEND (CURRENTLY=.1)

.08

Change them from 10% bx to 8% bx, i.e. closer to the airfoil I.e. and t.e..

ENTER JMAX (ClRCUM. PNTS) FOR OUTER GRID, FORMAT=I2

(DEFAULT=31, MAX=31)

21

This depends on JMAX for the pseudo grid, also pitch ratio; in this case, the

pseudo grid will have 28 points, and there will be 3 pseudo-stator grids for 4 rotor

grids, so 21 points are chosen so that the spacing will be the same for each row.

ENTER 1 TO CHANGE JBEG AND JEND, OR RETURN

1

This allows moving the circumferential (Y-direction) boundaries of the inner grid.

ENTER % PITCH FOR JBEG AND JEND (CURRENTLY=.25)

.20

Change the distance of the boundaries from the airfoil surface from 25% pitch to

20%, i.e. closer to pressure and suction sides.

ENTER IMAX (AROUND BLADE) FOR INNER GRID, FORMAT=I3

(DEFAULT=101, MAX=101)

ENTER JMAX (NORM TO BLADE) FOR INNER GRID, FORMAT=I2

(DEFAULT=21, MAX=31)

ENTER 1 TO CHANGE DENSITY AT SURFACE

1

Allows changing distance from airfoil surface of 1st O-line of inner grid.

ENTER VALUE OF DSBOD (ORIG, WITH JMX=21, IS .0005)

.0003
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ENTER JMAX FOR TIP CLEARANCE REGION, FORMAT=I2

(DEFAULT=11, MAX=11)

Number of O-lines in tip clearance grid.

ENTER KMAX (RADIAL PNTS) BEFORE ADDITION, FORMAT=I2

(DEFAULT=25, MAX=51(NO ADDITION))

45

ENTER KMAX FOR TIP CLEARANCE REGION, FORMAT=I2

(DEFAULT=5, MAX=15)

13

Optimizing K-plane distribution is a trial-and-error process; the numbers chosen

here should be less than or equal to final number of K-planes desired. Initially, the

program should be run through to the point at which the user has the opportunity

to examine the distribution of the chosen number of K-planes. This should be

repeated, with modifications made after each examination, until the distribution is

satisfactory, at which point the program can be run through its entirety.

CURRENT DIMENSIONS:

NOTE THAT POINTS WILL BE ADDED IF AXIAL SPACING AT

INLET/EXIT BOUND IS CHANGED, AND AGAIN IN OVRLAP,

ALSO RADIAL DISTRIBUTION CAN BE MODIFIED LATER.

AIRFOIL: 1

OUTER: 9, 28 INNER: 1,1 RADIAL: 45 45

AIRFOIL: 2

OUTER: 49, 21 INNER: 101, 21 RADIAL: 45 33

PAUSE...

Provides an opportunity to make sure dimensions are correct before continuing.

ENTER 1 TO INCREASE CLUSTERING AT T.E. FOR AIRFOIL 2

This will put more grid points around the airfoil trailing edge; note this will take

away points from the rest of the airfoil surface.

ENTER 1 TO CHANGE ENDWALL SPACING AND/OR DIST. IN TIP

(DEFAULT: SETA1 = SETA2 = 0.03% SPAN = 1.80000E-03)

1

Unless "1" is entered, radial distance between each endwall and the next closest

K-plane will be set to 0.03% of the span, spanwise distribution will be symmetric

about the midspan, and the clearance region will be assumed to exist for the last

13 K-planes, i.e., the number entered for "KMAX" for tip clearance. For most

cases, it is better to specify the clearance region as a percentage of the total span;

to do this, it is necessary to enter "1" at this point.
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CHOOSE: 1) SPECIFY TIP CLEARANCE (I.E., %SPAN)

2) TIP CLEARANCE DETERMINED BY GRID

1

If option 2 is chosen, the user will be prompted for new endwall spacing, the same

at both endwalls, and the spanwise distribution will be symmetric about the

midspan. The tip clearance region will be defined as the top 13 K-planes. In this

example, the span is 6 inches; if an endwall spacing of .O02 inches is chosen, the

geometric distribution of the 45 K-planes would put the 33rd at radius=5.82594,

therefore the top 13 K-planes would represent 2.9% of the total span. To get the

desired 1% clearance, option I must be chosen.

ENTER PERCENT OF TOTAL SPAN FOR CLEARANCE REGION, FS.0

(ENTRY WILL BE DIVIDED BY 100 BEFORE MULTIPLICATION)

1.

This will cause the top 13 of the 45 K-planes to be disributed within the top 1% of

the total span.

CHOOSE: 1) K-LINES EVENLY SPACED IN CLEARANCE

2) DENSER AT CASING THAN AT BLADE TIP

3) DENSE AT CASING AND AT BLADE TIP

These are the results of choosing each of the above options:

1 2 3

These show only the distribution in the tip clearance; the spacing through the rest

of the span varies among the three as well.

3

ENTER SPACING BETWEEN CASING AND NEXT K-PLANE, F5.0

.002

ENTER SPACING BETWEEN BLADE TIP AND NEXT K-PLANE, F5.0

.002

ENTER SPACING BETWEEN HUB AND NEXT K-PLANE (F5.0)

(SPACING AT CASING IS SET TO 0.002000

.002
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The above are actual distances in inches.

ENTER 1 IF YOU WANT TO ADD RADIAL LINES AT MIDSPAN

1

Allows filling in sparse area at midspan without taking K-planes away from

endwalls; to determine whether this is necessary, a radial distribution should be

generated first without excercising this option.

ENTER NUMBER OF POINTS TO BE ADDED, 12

(CURRENT KMX: 45)

04

ENTER KLO & KHI (CURRENT DIST) BETWEEN WHICH TO ADD LINES, 213

020027

The above will redistribute the spacing between K-planes 20 and 27 with the

addition of four more K-planes, thus bringing the total number to 49.

RADII OF K-PLANES ACCORDING TO ORIGINAL STRETCHING

HAVE BEEN WRII"rEN TO A FILE.

HALT EXECUTION OR HIT ENTER TO CONTINUE

PAUSE...

At this point, the program should be exited and the radial distribution should be

examined; the output file is in FORTRAN unit 30, and contains the radius defined

for each K-plane; these can be plotted as R vs. K - here are the plots resulting from

running this program with and without the addition of 4 lines between 20 and 27:

--2L57--'-_,,: .... ...-, .... , ......... , .... ,- --, .... ,..
5 I0 IS _'O 25 $0 IS 40 45 SO

K

without addition

$ I0 15 20 25 50 $5 ¢0 45 SO

with addition

Note that the distribution below K=20 is the same in both cases, as are the

distribution above K=27 in the first plot and that above K=31 in the second.
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AXIAL CHORD = 6.34100

L.E. X = 5.00000 T.E. X = 11.3410

UPSTREAM BOUNDARY FROM INPUT FILE IS AT 60.8737% AXIAL CHORD

DWNSTREAM BOUNDARY FROM INPUT FILE IS AT 37.9120% AXIAL CHORD

(FOR VALUES LESS THAN 25, YOU MAY NEED TO REDEFINE IBEG & lEND)

ENTER 1 TO CHANGE BOUNDARIES OR RETURN

1

Allows changing axial boundaries from those specifiedin the inputfile.

ENTER 1 TO SPECIFY PERCENTAGES, 2 TO SPECIFY X-VALUES

1

Boundaries can be specified as either percentages of axial chord, or as actual

axial location in inches; the latter is easier when generating grids for multi-row

cases to ensure alignment of boundaries at the interface.

ENTER % AX CRD AT WHICH TO DEFINE UPSTRM BOUND (F5.0)

45.

ENTER % AX CRD AT WHICH TO DEFINE DWNSTRM BOUND (F5.0)

35.

CURRENT AIRFOIL GRID BEING GENERATED: 2

ENTER 0) NO CHANGE IN AXIAL SPACING

1) CHANGE AXIAL SPACING AT INLET

2) CHANGE AXIAL SPACING AT EXIT

1

For multi-row cases, increasing density of axial lines at interfaces is recommended;

in this case, there will be a pseudo-stator upstream of the rotor, so the latter is

considered airfoil number 2, and spacing should be reduced at its inlet. This

involves specifying a smaller spacing than exists when the domain is divided evenly

by the number of axial points in the grid, and adding an appropriate number of

axial points to compensate for the reduced spacing at one end.

ENTER AXIAL SPACING AT BOUNDARY (F10.0)

NOTE: EVEN SPACING IS 0.237787

.065

ENTER NUMBER OF NEW POINTS TO BE ADDED (il)

(Suggestion: 4

4

Determining the proper spacing and number of additional points may require some

trial and error, but one-third to one-quarter of the even spacing is a good start;

note that the total number of axial points must not exceed program dimensions,

also, inlet spacing for an airfoil must match exit spacing of the preceding one.

ENTER 1 TO FURTHER CHANGE SPACING, OR RETURN
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ENTER VALUE OF YFRAC(1), OR RETURN FOR -.5

This refers to the distance between the airfoil camber line and the lower

circumferential boundary of the outer H-grid in terms of the fraction of the pitch.

In almost all cases, the default (i.e. -.5 or 50% pitch below the camber line) will
work.

NOTE: IB,IE,JB,JE: 15 46 7 15
CHECK TO MAKE SURE THESE ARE OK BEFORE INITIALIZING.

PAUSE...

At this point, these values should be recorded, and upon completion of the grid,

check to make sure the outer H-grid lines defined by I-IB and l--IE for

JB-I <J>JE+ I, and by J=JB and J=JE for IB-I <I>IE+I, are contained entirely

within the boundaries of the inner O-grid; if not, the program should be re-run

with appropriate adjustments made to IBEG & 1END and�or JBEG & JEND.

ENTER 1 TO SKIP ELLIPTIC GRID GENERATOR

1

Recommend skipping elliptic grid generator, which requires a significant amount

of CPU, until the final run of the program.

ENTER K-INDEX TO BE USED TO DETERMINE PITCH, 12 (KMX: 49

25

This is required only for a 3D planar case; the pitch will be the same for all

K-planes, and will be equal to 2*PI*(radius at chosen K)/(number of blades).

In this case, K=25 is approximately at midspan, at which the radius is 27 inches,

therefore the pitch will be 2"PI'27/28 = 6.059 inches.

ENTER PERCENT 2ND ROW BX UPSTREAM OF 2ND ROW AT WHICH

PSEUDO-AIRFOIL INLET WiLL BE DEFINED

(NOTE: ROTOR INLET BOUNDARY IS DEFINED AT 45.0000

60.

The pseudo-stator inlet will be 15% rotor bx upstream of the rotor inlet.

ENTER FACTOR OF 2NO ROW GAP TO DEFINE PSEUDO-AIRFOIL GAP

(E.G., FOR A 3-VANE, 4-BLADE CASE, ENTER 1.333)

1.333

The pseudo-stator grid pitch will be 4/3 that of the rotor.

ENTER 1 TO SHIFT PSEUDO- GRID, RETURN FOR ALIGNMENT W/2ND ROW

1

For viewing purposes, most useful for 1/1 ratios; shifts pseudo-airfoil grid in

circumferential direction.

ENTER % PITCH TO SHIFT GRID (F5.0)

(CAN BE NEGATIVE)
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-10.
WRITING PLOT3D FILE ...

%

The above run produces the following grid:

| .0000

¥

0.

--8. 0000 1

O. I.O000 12.OQO

11.0000

7.

._. 0000

O.

O. 21.0000 Y e. oooo

View in radialdirection View in axial direction

Note the inner O-grid is not finalized. At this point, if all other aspects of the grid are

satisfactory, the program should be run again without skipping the elliptic grid

generator.

In summary, the steps to generate a grid are as follows:

1. Create the input file containing the airfoil(s) geometry in unit 2.

2. Invoke the program and, for a 3D case, exit after radial distribution

has been written out.

2a. (3D only) Repeat step 2 until desired radial distribution is achieved.

3. Run program through, excercising option to skip elliptic generator.

4. Repeat step 3 until desired inner/outer grid relationship is achieved.

5. Run program through, do not skip elliptic grid generator.

The following is a list of the subroutines and their functions.
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MAIN: prompts user for general information about the case; calls"

DIMEN:

GNRLAF:

GEOM:

RSPACE:

SPLINE:

CSPLIN:

CAMBER:

TSPLIN:

ALGEB:

OBOUND:

ELLIP:

TRI:

REDIST:

OVRLAP:

PSEUDO:

ROTLID:

UNWRAP:

WRPOUT:

GEOMOT:

PLOT3D:

prompts user for grid dimensions

main grid generation routine, called for each airfoil; calls:

reads in airfoil geometry from input file

for 3D cases,prompts user for spanwise grid distribution

fits a spline to the input airfoil coordinates, defines distribution of

grid lines normal to airfoil surface based on curvature
calculates derivatives of X and Y wrt S

generates airfoil camber line in X-Y coordinates

calculates curvature of outer grid boundaries

generates outer H-grid

generates outer boundary of the inner O-grid

elliptic grid generator, generates the inner O-grid

solves the tridiagonal matrix calculated in ELLIP

redistributes inner grid O-lines based on chosen surface spacing

for multi-row cases, generates patched boundary at each row
interface

for "pseudo-airfoil" cases, generates a small grid upstream of first

airfoil grid, representing the exit of the previous airfoil

for cases with tip clearance, generates tip clearance grid

for planar cases, "unwraps" the annular grid about the X-axis

for radial cases, "unwraps" the outer H-grid about the Z-axis

writes grid and case information to file for input to initializer

writes grid to PLOT3D-readable file

Miscellaneous routines:

SPACE1,
SPACE2:

PUTXYZ,

GETXYZ:

OPNCLO:

geometric point distributors

puts and gets coordinates from temporary storage files

opens and closes temporary storage files

The format of the input file is described here. All of these lines must be present
for every full airfoil for which a grid will be generated. ( No input is required for a
pseudo-airfoil, its grid will be determined by grid with which it interfaces.)
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Card # Columns Format Variable
1 1-80 A80

2 1-5 I5

(dummy)

NBLADE

Description
Title card to separate the airfoils;
not used by the program, but line
must be present.

Total number of blades in this
airfoil row; wll be used in

conjunction with radius to

Card # Columns Format Variable Description

determine periodic boundaries
of solution domain.

3 1-20 G20.8 XU Axial location of upstream bound.

3 21-40 G20.8 XD Axial location of downstrm bound.

(Note that XU and XD maybe be changed during program execution.)

4 1-5 15 NSPANS Number of spanwise locations
(radii) present to define airfoil
geometry; MIN = 2, MAX = 10

4 6-10 15 NSTR

(for N= 1,NSPANS:)

Number of X-Ycoordinates given
to define airfoil geometry at each
spanwise location; MAX = 251

5 1-20 G20.8 R(N)

(for I=I,NSTR:)

Radius at which the following
NSTR lines define the airfoil

geometry

6 1-20 G20.8 X(N,I)

6 21-41 G20.8 Y(N,I)

X-coordinate of Nth point at Ith
spanwise location

Y-coordinate of Nth point at Ith

spanwise location

Card type #6 is then repeated to make a total of NSTR lines containing X-Y values.

Note the X-Y coordinates must proceed clockwise around the blade

The Card#5/Card#6 combination is repeated to make a total of NSPANS groups of
NSTR+I lines, i.e., one line formatted as Card #5 followed by NSTR lines formatted

as Card#6. Each group defines the airfoil geometry at the specified radius. The first
radius must be at the hub, and the last must be at the casing. Note that the program

will linearly interpolate the coordinates at the given radii to define the geometry at
25%, 50%, and 75% span, and it is those, in addition to the hub and casing geometry,
that will be used to generate the grid.
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The entire format (i.e., beginning with a title card) is repeated for subsequent airfoils.

The following is the input file accompanying the preceding sample run:

LSRR rotor

28

1.14 13.745

5 136

0.24000000E+02

0.50000000E+01 0.28807001E+01

0.50013294E+01 0.28503103E+01

0.50052996E+01 0.28201504E+01

0.50118799E+01 0.27904596E+01

0.50210295E+01 0.27614498E+01

0.50326691E+01 0.27333498E+01

(130 more lines of this format)

0.25500000E+02

0.50000000E+01 0.33143501E+01

0.50013294E+01 0.32839804E+01

0.50052891E+01 0.32538404E+01

0.50118694E+01 0.32241602E+01

0.50210094E+01 0.31951704E+01

0.50326500E+01 0.31670904E+01

(130 more lines

0.27000000E+02

0.50000000E+01

0.50013294E+01

0.50052996E+01

0.50118799E+01

0.50210295E+01

0.50326691E+01

(130 more lines

0.28500000E+02

0.50000000E+01

0.50013294E+01

0.50052996E+01

0.50118895E+01

0.50210495E+01

of this format)

0.37861996E+01

0.37558098E+01

0.37256498E+01

0.36959400E+01

0.36669302E+01

0.36388197E+01

of this format)

0.42581501E+01

0.42277298E+01

0.41975298E+01

0.41677999E+01

0.41387596E+01
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0.50327091E+01 0.41106195E+01

(130 more lines of this format)

0.30000000E+02

0.50000000E+01

0.50013294E+01

0.50052996E+01

0.50118895E+01

0.50210400E+01

0.50326796E+01

(130 more lines

0.46918201E+01

0.46614199E+01

0.46312504E+01

0.46015396E+01

0.45725203E+01

0.45444098E+01

of this format)
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Flow Initializer

The purpose of the flow initializer is to define an initial guess at the solution of
the flow to give the flow solver something to start with. In addition, it is in this
program that the boundary conditions that will be applied in the solver are defined. It
requires, as input, the aerodynamic conditions at the inlet and exit of the solution
domain; also, the number of airfoils in each row for which a solution is desired, the
speed of rotation, Reynolds number, and Prandtl numbers for the case. The
computational grid, i.e. the file "GEOM", output from the GRIDGEN, is the only
other input, and there is no interactive user input. Output is in two forms: 1) a binary
"restart" file to be input to the flow solver, 2) a PLOT3D file for viewing the initial

flowfield and boundary conditions.

The method of initialization is slightly modified from Rai's original version.

Static pressure and density are linearly interpolated between the inlet and exit of the
solution domain, axial and radial velocities are constant across the domain, and

tangential velocities are linearly interpolated between the inlet and exit of each airfoil

based on the general curvature of the airfoils. A no-slip condition is then applied to

all surfaces, which was not done by Rai. This is done by defining the (relative)

velocity on each surface to be zero, then linearly interpolating to a pre-defined

distance from the surface along grid lines that are normal to the surface. Another

added feature not present in Rai's original code is the dependency of boundary values

on radial and tangential location. This allows specification of an incoming endwall

boundary layer (if desired)in three dimensions, and/or an incoming wake to simulate

the presence of an airfoil upstream of the inlet to the solution domain, in either two or

three dimensions. The same flexibility applies to the exit plane, where measured

static pressure data may be held across the plane if the case so warrants.

The following is a list of subroutines and their functions:

MAIN:

GEOMIN:

AEROIN:

BCDEF:

INIT:

INITOT:

PLOT3D:

main driver, calls:

reads file "GEOM", containing grid coordinates and case info.

reads file containing aerodynamic and viscous parameters

interpolates and nondimensionalizes inlet and exit flow properties

interpolates between inlet and exit to initialize flowfield, imposes

no-slip condition on surfaces

writes file "INIT", restart file for input to flow solver RAI3DS

writes grid and initial flow in PLOT3D format for viewing

Miscellaneous routines:
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SHIFI':

PUTXYZ,
GETXYZ:

PUTQ,

GETQ:
OPNCLO:

applies periodic shift to airfoil grids for multi-blade cases

puts and gets grid coordinates from temporary storage files

puts and gets flow properties from temporary storage files

opens and closes temporary storage files

The format of the aerodynamic input file is described here. There are two

possibilities for defining the inlet and exit conditions. The first is to specify inlet

aerodynamic conditions and exit static pressures at specific radii. These will then be

linearly interpolated onto the radii of the computational grid, and will not vary in the

circumferential (tangential) direction. Flow properties will then be calculated from

the aerodynamic conditions and nondimensionalized according to the scheme

expected by the solver. The other option is to input dimensional values of the flow

properties themselves (density, velocity components, and pressure. ) at every

computational grid point in the inlet plane, along with dimensional static pressure at

every grid point in the exit plane. These will then be nondimensionalized according

the the scheme expected by the solver. The latter option will allow specification of an

incoming wake, but it is much more difficult, particularly in three dimensions. It

requires interpolation of the flow properties from some other source, whether it be

experimental data or output from a flow solver, etc., onto the grid coordinates. A

method of accomplishing this interpolation is not provided in the RAI3DS system.

This file must be in FORTRAN unit 2; here is its format:

Card# Columns Format Variable

1 1-80 A80 (dummy)

2 1 I1 IVARY

3 1-2 I2 NBLDS(1)

3 3-4 12 NBLDS(2)

Description
Title card to identify case; not used
by program but must be present.

=0: aerodynamic input is specified
at radii, does not vary across pitch;
=1: flow properties are defined at
grid points.

Number of blades in row 1 for
which solver will calculate flow

(MAX = 4).

Number of blades in row 2 for
which solver will calculate flow
(MAX = 4).
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Card# Columns Format Variable Description

3

4

5-6 I2 N-BLDS(3)

(Note: NBLDS(1)+NBLDS(2)+NBLDS(3)

1-10 F10.0 RPM

4 11-20 F10.0 GAMMA

4 21-30 F10.0 CP

4 31-40 F10.0 REYNIN

4 41-50 F10.0 PRKIN

4 51-60 F10.0 PRTUR

Number of blades in row 3 for
which solver will calculate flow
(MAX = 4).

must not exceed 7.)

Speed of rotation in revolutions
per minute (=0.0 for stationary
cases); can be negative.

Specific heat ratio.

Specific tleat at constant pressure
in (ft'/sec'/*R).

Reynolds number per inch based
on inlet conditions.

Laminar Prandtl number.

Turbulent Prandfl number.

If IVAR Y=O:

5

6

6

6

6

6

6

1-2

1-10

11-20

21-30

31-40

41-50

51-60

I2

F10.0

FIO.O

F10.0

F10.0

F10.0

FIO.O

KUP

RADUP

POINF

TOINF

AMACH

ALPHA

PHI

Number of radii at which inlet

aerodynamic conditions will be
defined; MIN= 1, MAX=50.

Radius at which the conditions on

this line apply.

Absolut, total pressure at inlet,
in 0b/in').

Inlet total temperature in (*R).

Absolute Mach number at inlet.

Absolute inlet flow angle in
degrees,defined as tan"(V/U),
where V=tangential velocity and
U=axial velocity.

Absolute inlet flow ang_le in
degrees, defined as tan (W/U),
where W=radial velocity and
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Card# Columns Format Variable Description

U=axial velocity.
Card 6 is then repeated to make a total of KUP lines.

7 1-2 12 KDW Number of radii at which exit

static pressure will be defined;
MIN=I, MAX=50.

8 1-10 F10.0 RADDWN Radius at which the static pressure
on this line applies.

8 11-20 F10.0 PDWN Exit static pressure in fib/in2).
Card 8 is then repeated to make a total of KDW lines.

If WARY= 1:

For n=I,NBLDS(1):

For k=I,KMX, where KMX=number of radial planes in grid:

For i=I,JMX(1), where JMX(1)--number of tangential points in 1st row grid:

5 1-15 G15.8 RINF(n,j,k) Inlet density in 0b-sec2/in').

5 16-30 G15.8 UINF(nj,k) Inlet axial velocity in (in/sec).

5 31-45 G15.8 VINF(nj,k) Inlet tangential velocity in (in/sec);
note this is tangential velocity for
annular cases, Y-vel. for planar.

5 46-60 G15.8 WINF(nj,k) Inlet radial velocity in (in/sec);
note this is radial velocity for

annular cases, Z-vel. for planar.

5 61-75 G15.8 PINF(n,j,k) Inlet static pressure in (lb/inz).

(This card will appear a total of NBLDS*KMX*JMX times)

For n=I,NBLDS(last row):

For k=I,KMX, where KMX--number of radial planes in grid:

For j=l,JMX(last row), where JMX=number of tangential points in last row grid:

6 1-15 G15.8 PDWN(n,j,k) Exit static pressure in

0b/inz).

(Thiscardwillappear a totalofNBLDS*KMX*JMX times)
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Note that if the case is planar, either two- or three-dimensional, the geometry

will have been translated in the grid generator so that the first K-plane has a constant
Z-value of 0.0. The values of RADUP and RADDWN, however, must correspond

with the original radii input to the grid generator. The following is a sample input file

corresponding to the sample run of the grid generator previously shown:

LSRR rotor

o
II

410.00 1.4 6007.120 41000.0 0.72 0.90

20
24.00000 14.60446 540.00000 0.15500 68.2272 0.20240

24.30000 14.68998 540.00000 0.17721 67.32001 0.44000

24.40021 14.68890 540.00000 0.18047 66.87000 -0.89000

24.49980 14.68432 540.00000 0.18016 66.62000 -1.21000

24.70020 14.67641 540.00000 0.17641 65.99001 -1.55000

24.89999 14.67336 540.00000 0.17474 65.78999 -2.01000

25.30020 14.69601 540.00000 0.18069 67.33000 -2.65000

25.80000 14.69550 540.00000 0.17372 67.05000 -0.26000

26.39999 14.69499 540.00000 0.17143 67.39000 -0.77000

27.00000 14.69397 540.00000 0.16894 68.39000 -2.95000

27.60120 14.69056 540.00000 0.17413 68.27000 -3.12000

28.20000 14.68664 540.00000 0.16231 67.27000 -3.44000

28.50121 14.68991 540.00000 0.16094 67.13000 -1.47000

28.70100 14.69310 540.00000 0.16065 67.39000 -1.37000

28.90021 14.69557 540.00000 0.16098 67.22000 -1.15000

29.10120 14.69477 540.00000 0.16118 67.14000 -1.07000

29.30099 14.69441 540.00000 0.16004 68.41000 -0.70000

29.49120 14.69419 540.00000 0.15836 71.52000 -0.24000

29.71730 14.63597 540.00000 0.14163 72.33858 -0.13300

30.00000 14.60228 540.00000 0.12944 73.58221 -0.07090

2

24.00000 14.2018

30.00000 14.21483

Note that the boundary values and initial flowfield should be in absolute frame
and Cartesian coordinates. This should be checked using PLOT3D before running the

flow solver. When viewing the flowfield, also note that density has been nondimension-

alized by the gap-averaged inlet density at midspan, call it RNDF; pressure, by the

gap-averaged inlet pressure at midspan, call it PNDF; velocity components have been
nondimensionalized by _/(PNDF/RNDF).
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Flow Solver

The flow solver's main input is a "restart file", which contains all geometric and

aerodynamic information about the case, including flow properties at each node that

were calculated at the end of the solver's previous run. In addition, a small amount of

input affecting a particular run, such as number of time steps, size of tune step,

frequency of printing convergence information, etc., is required. (For two-dimensional

cases, a file defining h-ratio is also necessary.) For each time step, the solver runs

through the solution algorithm for each airfoil grid separately, interpolating at grid

boundaries, explicitly enforces boundary conditions, and records convergence
information. For unsteady cases, this is repeated (usually twice) before the rotating

grid(s) is moved relative to the stationary grid according to the size of the time step.

After the last time step, the restart file is updated with the latest flowfield and output.

For unsteady cases, there is additional output consisting of files containing pressure

distributions on airfoil surfaces, and total pressure across the exit plane, which have

been written at specified time intervals. This allows analysis of unsteady behavior as
a function of time, in addition to the instantaneous solution recorded in the restart file.

The program solves the unsteady, three-dimensional, compressible Navier-Stokes

equations, supplemented by an equation of state and an energy equation, all of which

are first transformed from Cartesian coordinates into a (_, 1"1,c.) coordinate system. In

this coordinate system, _ is the direction tangent to the airfoil surface, rl is the

direction normal to the airfoil surface, and g is the direction normal to the hub surface.

The thin-layer assumption is made, that is, the viscous terms evaluated as derivatives

in the direction tangent to the body surface are assumed to be negligible. The

transformed equations then take the following form:

where

-1

Q +E +Fn+G_= Re (S,I+T) (1)

Q= Q/J

E(Q,_) = (_,Q + _ E + _ F + _ G)/J

F(Q,rl) (rI,Q + _xE + _! F + _l,,G)/J

G(Q,g) = (g,Q + g E + g l_ + g,,G)/J

(2)

Q is the dependent variable vector, (p, pu, pv, pw, e) in Cartesian coordinates, where

p is density, u, v, and w are velocities in the x-, y-, and z-directions, respectively, and e

is energy; E, F, and G are flux vectors in the x-, y-, and z-directions, respectively; S

and T are the viscous flux vectors in the 1]- and g-directions, respectively; J is the

Jacobian of the coordinate transformation; Re is Reynolds number. The integration

scheme used to solve the set of equations is described in detail in Ref. 1. It's final
form is as follows:
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where
+ +

A = (aElaQ)+4-

B = (aFlaO)±+
C = (OGIOQ)

M = (OSIOQ)

N = (_TI_Q) (4)

and A, V, and 8 are forward, backward, and central difference operators, respectively.

The E , F , G , S , and T are numerical fluxes consistent with
i+ll2d,k ij+ll2 k id,k+ll2 id+ll2,k i,j,k+ll2

their corresponding physical fluxes, and are evaluated using Roe's scheme (Ref. 4).

The superscript n refers to the time step, and the superscript p refers to the iteration

per time step. The subscripts i,j,k refer to the grid node. As mentioned before, the
derivation of this scheme and it's limitations are fully described in Ref. 1; it is

presented here only for reference.

The following is a general list of subroutines and their functions; a detailed

version can be found in Appendix 1. Key features and modifications made to some

of these routines, i.e., enhancements to Rai's original ROTOR3 code, are documented

in some detail following the list. They are categorized according to the general

feature which was modified, which may have required implementation in several
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routines, as opposed to simple listing of the changes made to each routine.

RAI3DS (main routine):
RESTIN:

JACBIN:

TRIANG:

I/DATA:

EIGEN:

(for each iteration)

reads indicators to dictate run: calls:

reads initial flow file or restart file from previous RAI3DS run
calculates Jacobians for the variable transformation

calculates interpolation factors at inner/outer interface

(2D only) reads H-ratio input data

(steady only) calculates "time" step

CONTRL:

GMOVE:

PGRID:

RHS:

SRINT:

MUKN:

MUTR:

FLUXR:

VFLUX:

STCONT:

LHS:

controlling routine for each solution iteration; calls:

(multirow only) moves rotating grids relative to stationary grids

defines solution above and below periodic bounds for use in RHS

control routine for computing the right hand side of Eq. (3); calls:

(outer grids only) interpolates at inner/outer interface

calculates kinematic viscosity (Sutherland's law)

calculates eddy viscosity (Baldwin-Lomax with modifications)

computes the numerical flux vectors E p, F p, and G° in Eq. (3)

computes the viscous flux vectors Se and T°in Eq. (3)

(2D only) adds stream tube contraction terms in place of G °

control routine for computing the left hand side of Eq. (3) and
_ _p+l .

solvinglorQ ;calls: ± ± ±
SMATRX:computes the matrices A, B, and C in Eq. (3)

VMAT:

BTRI:

CORREC:

CONVRG:

WRTPS:

WRTEXT:

RESTOT:

computes the matrices M and N in Eq. (3)

inverts the matrix equation (3), solving for QP+_

imposes explicit boundary conditions at all boundaries

calculates change in solution from previous iteration

writes out pressure distribution at midspan

writes out exit total pressure across pitch at midspan

writes out restart file containing updated solution

2D or 3D solution: RAI3DS has the capability for either two- or

three-dimensional solutions. Its algorithms work with three dimensions, and for this

reason, even if a two-dimensional solution is desired, a three-dimensional grid is

required. The grid for a two-dimensional solution must consist of three identical grid

planes at three separate Z-locations. A maximum K-index of 3 will signal the solver

to compute the solution at only the middle plane and copy it to the planes above and
below it. This will ensure zero flux in the Z-direction. In addition, the solver will

skip evaluation of terms with respect to Z, i.e., vectors G p and T°and matrices C-and N

in Eq (3), saving on computation time. (Affected subroutines: CORREC, all RHS

4.3



and LHS; also, routine MUTR2D will be called instead of other MUTR routines.)
Stream tube contraction terms: Some three-dimensional effects have been

shown to be effectively captured in a two-dimensional solution by adding stream tube

contraction terms (Rangwalla, Ref. 5). The calculation of these terms and their

incorporation in the solution algorithm have been added to RAI3DS. (Affected

subroutines: all RHS routines and VFLUX, plus addition of HDATA and STCONT.)

Planar or annular configuration: Although RAI3DS always works in Cartesian

as opposed to cylindrical coordinates, the configuration of the geometry may be either

a plane or an annulus. Obviously, a two-dimensional case must be planar, but a

three-dimensional case may have either configuration. (Affected subroutines:

GMOVE, PGRID, CORREC; logical variable PLANE is indicator.)

Symmetry condition: For axisymmetric three-dimensional cases, more grid

resolution can be obtained by using the solver's full grid capacity for the region

between the hub and the midspan of the airfoil and imposing a symmetry condition at

the uppermost K-plane. This, in effect, doubles the spanwise resolution. Obviously,

this is applicable only to planar three-dimensional cases with no tip clearance. It has

been demonstrated with such a case, however (Ref. 6), that fmer spanwise grid

resolution significantly improves the solver's capability for predicting
three-dimensional effects. For details on this feature and instructions on how to use it,

see Appendix 2. (Affected subroutines: all RHS, all LHS, and all MUTR routines,

CORREC; logical variables HAFSYM and FULSYM are indicators.)

Multi-blade, multi-row capability: Current limitations in the solver are four

blades per row and three total rows. (Affected subroutines: GMOVE, PGRID, outer
LHS routines, CORREC; variables NBLADS and NROWS are indicators.)

Radial flow capability: While ROTOR3 was applicable only to axial flow

machines, in which rotation occurs in the plane normal to the direction of the

incoming flow, RAI3DS can be used to solve cases in which the rotation occurs in the

same plane as the incoming flow vector. Specifically, for axial flow cases, rotation is
about the X-axis, and for radial cases, rotation is about the Z-axis; in both cases, flow

convects along the X-axis. The current version of the code can be used for impellers

without tip clearance or inlet guide vanes/diffusers. (Affected subroutines:
CORREC, GMOVE, PGRID, TRIANG, SHIFT, EIGEN, all RHS, all LHS, all

MUTR; logical variable RADIAL is indicator.)

Inlet/exit boundary_ conditions: The initial values of entropy, pitch angle, yaw

angle, and total enthalpy are held at the inlet, accompanied by a Reimann invariant

that is extrapolated from the interior. Holding both the enthalpy and entropy results in

holding total pressure, which is a property commonly specified by design engineers at

the inlet. In addition to allowing total pressure specification, this is a less stiff

condition than that in ROTOR3, which held initial entropy, tangential and radial

velocities, an initial Reimann invariant, and a Reimarm invariant extrapolated from the

interior. The relaxed conditions reduce the occurence of pressure waves, which may

slow the convergence of the calculation in some cases. Specified static pressure is

4.4



held at every point in the exit plane, modified from the radial equilibrium condition in
ROTOR3. Both the inlet and exit conditions may vary in both the tangential and
radial directions, allowing specification of more general conditions than were possible
in ROTOR3. The derivation of the inlet boundary condition is presented in Appendix
3. (Affected subroutine: CORREC.)

Surface boundary conditions: Capability of specifying wall temperature or heat

flux on solid boundaries was added to ROTOR3. These options may be chosen, or an

adiabatic wall condition may be used. The implementation of specified wall

temperature was derived by Griffin (Ref. 7), and the implementation of specified heat

flux is presented in Appendix 3. (Affected subroutines: LHS, CORREC, plus
addition of BCSURF; ISURF is indicator.)

Turbulence model: The Baldwin-Lomax turbulence model in ROTOR3 was

modified to account for surface curvature, three-dimensionality and Coriolis force.

These modifications, deduced by interrogating transport equations for the turbulent

kinetic energy and total Reynolds shear stress, are similar to those termed by various

investigators as 'algebraic stress models' (Ref. 8). A transition model has also been

implemented that accounts for the influence of upstream airfoil wakes on the onset

and the extent of the transition on the downstream airfoils. This model is primarily

applicable on the suction sides of airfoils operating at moderate Reynolds number.
(Affected subroutines: all MUTR routines.)

Pseudo-airfoil: This capability was added to allow solution for a rotor moving

past a stationary wake without having to solve for the upstream stator. Conditions are

specified at the inlet of a small H-grid, which remains stationary and is treated as an

"outer" grid by the code. The following rotor moves past the H-grid as it would a

stator grid. (Affected subroutines: CONTRL, CORREC, JACBIN, TRIANG,

RHSSO; variable IPSEUD is indicator.)

To create the necessary input and execute the flow solver, the user should run

the shell script, RAIJOB. This script is run on the Iris and will prompt the user for all

information necessary for defining the input files, setting up the file environment, and

executing the flow solver. The output from the script is a UNICOS jobstream, which

is then submitted to the Cray. Presented below is a sample run of the shell script

corresponding to the three-dimensional pseudo-stator/rotor case for which a sample

run of the grid generator was previously shown. Note that in order for the script to

execute, the file "skel.job" must exist in the current directory.
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% RAIJOB

* RAI3DS *
, t

This shell script creates a UNICOS jobstream for running RAI3DS on the NASA/MSFC

Cray.

You will be asked questions about your job, and the file "skel.job" will be edited.

The file "skehjob" must be in the current directory.

(Enter "q" to quit or Carriage Return to continue.)

Please enter Cray userid

ckab196

Please enter Cray password

passwd

Please enter job name (7 characters max)

isrr

Information about the case size is required to request SSD space

Please enter number of airfoil rows in the case

2

Note this includes the pseudo-stator.

2D OR 3D? (Enter 2 OR 3)

3

How many airfoils in row I ?

Tip clearance in row 1? (y or n)

r_

How many airfoils in row 2 ?

Tip clearance in row 2? (y or n)

Please enter KMAX
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Please enter numer of k-planes in tip clearance
13

Please enter name of input restart file residing in $HOME on the Cray

isrrinit

The script is set up to copy the file "$HOME/lsrrinit' into FORTRAN unit 8,

which the solver expects to contain the input restart file. This can be changed

by editing the UNICOS jobstream if the input file does not reside in the user's

home directory on the Cray.

Please enter name of output file to be written to SHOME, or

Carriage Return if you do not want to save the file on the Cray.

(Either way, the file will be disposed back to the IBM.)

lsrr200

Please enter number of steps per rotation through one rotor passage.

300O

This determines the time step. The number is case-dependent, and for some

cases in which the grid is particularly dense, the solver may blow up if the time

step is too large. It is safest to use at least 2000 steps per rotor passage. For

steady-state cases, the time step is based on grid density and the flowfield, and

can be increased to speed up convergence of the solver.

Please enter number of Iterations per time step

3

This is usually 3 for unsteady cases and l for steady-state cases.

Do you want to change frequency of eddy viscosity calculation? (y or n)

Y

If yes, eddy viscosity will be calculated at the first time step, then only as often

as is specified. Between updates, the most recently calculated value is used at

each grid point. This saves on CPU, since eddy viscosity calculation is very

time-consuming, and does not adversely affect the solution as long as the

viscosity is updated reasonably often (every 50 or 100 time steps).

Please enter Iteration Interval at which eddy viscosity will be calculated

(e.g., for "50", eddy viscosity will be updated every 50 iter)

100

Please enter iteration number at which to impose this frequency

(e.g., for "500", eddy viscosity will be calculated at every Iteration

until number 500, after that, every 100 Iterations

i000

Do you want to force transition? (y or n)

Y

This requires knowing where the transition points are on the airfoil in terms of

grid indices. The turbulence model will calculate the natural transition point

using empirical correlations, which may be inaccurate. If the transition point is
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known (from experimental data), best results are obtained by specifying it.

Please enter I-indices of inner O-grid between which eddy viscosity

will be turned on (same for all rows)

(e.g., for "37 81", eddy viscosity will be set to zero for I=1,37 and for 1=81,1MAX)

56 92

Please enter K-planes between which calculation will be transitional

(e.g., for "7 25", calculation will be fully turbulent

around entire blade for K=1,7 and for K=25,KMAX).

Hit Carriage Return for full span transitional.

Enter:

0) Surface boundary condition will be 1st-order, adiabatic

1) Surface b.c. will be 1st-order, specified wall temp

2) Surface b.c. will be 2nd-order, specified wall temp

3) Surface b.c. will be 2nd-order, specified heat flux

3

See Appendix 3 for descriptions of these.

Enter heat flux on blade, hub, casing, separated with spaces; must be reals with

not less than 1 digit before the decimal point and 5 digits after the decimal point

(e.g., 0.41500);
see Users Manual for instructions on how to calculate these in proper units.

0.41500 0.52500 0.52500

See Appendix 3.

Enter:

0) No line of symmetry will be imposed

1) Restart file contains full span

(program will solve for K=I to midspan, then impose symmetry)

2) Restart file contains half span

(program will solve for K=I to KMAX with modified b.c. at KMAX)

0

See Appendix 2 for details.

How many time steps?

2O0

How often do you want convergence info written out? (every_ time steps)?

10

This consists of the maximum change in energy over each grid for each airfoil

and its grid indices. It should be noted that this information can be used to

insight into the convergence rate of a case and�or to locate trouble spots in the

flowfield. To decide whether a case is converged, however, requires thorough

examination of theflowfield, particularly surface static pressures and exit total

pressure contours. For this reason, there is no predefined convergence
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criterion built in to the solver.

How often do you want midspan Ps dist. written out? (0 = not at all)?

5O

This is useful in unsteady cases for plotting pressure amplitudes. The

(nondimensional) surface static pressures at midspan are written as a function

of time step, 1-index of the O-grid, and percent axial chord downstream of the

leading edge. This format can be modified in the routine WRTPS to produce

proper input formats for various plotting packages. In this case, the

information will be written out every 50 time steps.

How often do you want exit Pt written out? (0 = not at all)?

50 l

Same as above, except total pressure across the exit plane at midspan will be

written out; format is in routine WRTEXT.
Please enter CPU time in seconds

5000

This is best determined by trial and error; a typical 2D cascade requires less

than 1/2 second per iteration, whereas a 3D stage mary require over 30 seconds

per solution iteration (90 seconds per time step), depending on grid size.

The file Isrr.job has been created.

%

The above nan produces the following jobstream:

# USE R=ckab196 PW=passwd

# QSUB -r Isrr

# QSUB -eo

# QSUB -Im 4.0mw

# QSUB -It 4990

# QSUB -IT 5000

#

# CREATE TEMPORARY DIRECTORY AND TEMPORARY SSD

#

set -x

cd $TMPDIR

SSD='tmpdir/ssd'
#

# CLEAN-UP IF JOB TERMINATES ABNORMALLY

#
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trap "cd ..; exit" 0 2 3 15 26

#

# BUILD SEGLDR INPUT COMMAND FILE AND LINK

# fetch the object file from the Cray; to create the object file,

# compile the source using cft77 with the -b option

#

fetch slvr.o -f TR -t'dsn=CKAB196.UNIC.OBJECT.RAI3DS,DISP-SHR'

#

cat >seg.input<<eofseg

bin=slvr.o

abs=a.slvr

xfer=RAI3DS

eofseg

segldr seg.input
#

# DEFINE FILE 3 - main input file

#

cat >fort.3<<eof3

25

00200000100005000050

2000300003

01.0099999

01001000

056092

001049

3

0000.415000000.525000000.52500

0

eof3

#

# DEFINE FILE 4 - hratio values (this file is not used for 3d cases)

#

cat >fort.4<<eof4

nvals: 2

x h

-100. 1.0

100. 1.0

nvals: 2

x h

-100. 1.0

100. 1.0

eof4

#
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# DEFINE FILE 8 (input restart file)

#

cp $HOME/lsrrinit fort.8
#

# RUN JOB

#

FILENV=.assign

# Export the file environment:

export FILENV

# Assign statements for unformatted restart files coming from Iris:

assign -a fort.8 -F f77 -N ieee -C ascii FORT8

assign -a fort.9 -F f77 -N ieee -C ascii FORT9

# SSD files

# Export the SSD environment variable

export SSD

# See if there's enough space on SSD for all the files; ff not,

# use disk for all the files.

if setf -n 34868b $SSD/dummyfil

then

rm $SSD/dummyfil
FILDIR=$SSD

else

FILDIR=$TMPDIR

fi

# The number in the -n option is how many blocks of 512 WORDS will be

# written to the file; e.g. if 2 arrays of dimension (512,3) will be

# written to the file, then the assign statement would have "-n 6."

#

#******note - there are only files for 2 rows here!!*********

#

# DEFINE SSD FILES FOR Q ARRAYS - 1 FOR EACH ROW AND GRID TYPE

# TOTAL SIZE OF EACH OF THESE WILL BE nAIRFOILS*5*nia*nja*nka

assign -a $FILDIR/fort51 -n 1499 -s u FORT51

ass=gn -a $FILDIR/fort52 -n 1499 -s u FORT52

ass=gn -a $FILDIR/fort53 -n 1 -s u FORT53

ass=gn -a $FILDIR/fort54 -n 1499 -s u FORT54

ass=gn -a $FILDIR/fort55 -n 1499 -s u FORT55

assign -a $FILDIR/fort56 -n 1499 -s u FORT56
# DEFINE SSD FILES FOR QOLD ARRAYS - 1 FOR EACH ROW AND GRID TYPE

# TOTAL SIZE OF EACH OF THESE WILL BE nAIRFOILS*5*nia*nja*nka

assign -a $FILDIR/fort61 -n 1499 -s u FORT61

assign -a $FILDIPJfort62 -n 1499 -s u FORT62

assign -a $FILDIR/fort63 -n 1 -s u FORT63
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assign -a $FILDIR/fort64 -n 1499 -s u FORT64

assign -a $FILDIR/fort65 -n 1499 -s u FORT65

assign -a $FILDIR/fort66 -n 1499 -s u FORT66

# DEFINE $SD FILES FOR AJA ARRAYS - 1 FOR EACH ROW AND GRID TYPE

# TOTAL SIZE OF EACH OF THESE WILL BE nia*nja*KMX

assign -a $FILDIR/fort71 -n 300 -s u FORT71

assign -a $FILDIR/fort72 -n 300 -s u FORT72

assign -a $FILDIR/fort73 -n 1 -s u FORT73

assign -a $FILDIR/fort74 -n 300 -s u FORT74

assign -a $FILDIR/fort75 -n 300 -s u FORT75

assign -a $FILDIR/fort76 -n 80 -s u FORT76

# DEFINE SSD FILES FOR PERMANENT XYZ ARRAYS - 1 FOR EA ROW AND GRID
TYPE

# TOTAL SIZE OF EACH OF THESE WILL BE 3*nia*nja*KMX

ass=gn -a $FILDIR/fort41

assign -a $FILDIR/fort42

assign -a $FILDIR/fort43

assign -a $FILDIR/fort44

assign -a $FILDIR/fort45

-n 899 -s u FORT41

-n 899 -s u FORT42

-n 1 -s u FORT43

-n 899 -s u FORT44

-n 899 -s u FORT45

assign -a $FILDIR/fort46 -n 239 -s u FORT46

# DEFINE SSD FILES FOR WORKING XYZ ARRAYS - 1 FOR EACH ROW AND GRID
TYPE

# TOTAL SIZE OF EACH OF THESE WILL BE 3*nia*nja*KMX

assag n -a $FILDIR/fort81

assign -a $FILDIR/fort82

ass=gn -a $FILDIR/fort83

assign -a $FILDIR/fort84

assagn -a $FILDIR/fort85

-n 899 -s u FORT81

-n 899 -s u FORT82

-n 1 -s u FORT83

-n 899 -s u FORT84

-n 899 -s u FORT85

assign -a $FILDIR/fort86 -n 239 -s u FORT86

# DEFINE SSD FILES FOR TMP ARRAYS - 1 FOR EACH ROW OUTER AND TIP

# TOTAL SIZE OF EACH OF THESE WILL BE 5*nia*nja*nka

assign -a $FILDIR/fort91 -n 1499 -s u FORT91

assign -a $FILDIR/fort92 -n 1 -s u FORT92

assign -a $FILDIR/fort93 -n 1499 -s u FORT93

assign -a $FILDIR/fort94 -n 1499 -s u FORT94

# DEFINE SSD FILE FOR STR ARRAY - ONLY ROTOR INNER GRID

# TOTAL SIZE WILL BE 5*nia*nja*nka

assign -a $FILDIR/fort97 -n 1499 -s u FORT97

# DEFINE SSD FILE FOR INTERP ARRAYS - 1 FOR EACH ROW

# TOTAL SIZE OF EACH WILL BE 3*(4*nka*nia*3 + nka*nia*3)

assign -a $FILDIR/fort31 -n 435 -s u FORT31

assign -a $FILDIR/fort32 -n 435 -s u FORT32

# DEFINE SSD FILE FOR H-RATIO ARRAYS - 1 FOR EACH ROW
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# TOTAL SIZE OF EACH WILL BE (nia*nja)
assign -a $FILDIR/fort34 -n 1 -s u FORT34
assign -a $FILDIR/fort35 -n 1 -s u FORT35
#
time ./a.slvr
#

# cat the unsteady Ps and Pt files
cat fort.21
cat fort.22
cat fort.24
cat fort.25
#
# COPY OUTPUT FILE TO CRAY

cp fort9 $HOME/lsrr200
Is -I $HOME
#
# SEND RESTART FILE TO FRONTEND
#
# dispose fort9 ?????????

The dispose command must be edited in the file 'skel.job' to send the output file back
to the frontend.

For two-dimensional cases in which H-ratio is to be specified, it is necessary to
edit the here document defined as 'fort.4' in the above jobstrearn. The format is the

same as is already contained in the here document: for each airfoil, simply edit the
number following 'rivals:' to tell the code how many values of x and h to read (must
be a two-digit number in columns 9 and 10, not greater than 25 for each airfoil), then

list that many lines of format (F10.0) to define h as a function of x. The x-values
should be in increasing order, beginning with a value that is not greater than the inlet
boundary of the airfoil's outer H-grid, and ending with a value that is not less than the

exit boundary. The values of h can be defined by using results from either a
streamline or a three-dimensional inviscid analysis of the airfoil row (Ref. 9). For
two-dimensional cases with no stream tube contraction, no modifications to the here

document are necessary, assuming the solution domain does not lie outside the range

(-100.0 < x > 100.0).

In addition to the restart file, the output file from the UNICOS jobstream will be

sent to the frontend. This file will contain all output from writes to Unit 6 in the
solver, including convergence information and listings of the files containing midspan
pressure distributions and exit total pressures.

Experience with the solver has revealed several somewhat common problems
that occur when a calculation is begun from an initial guess. The following is a list of
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the most common, along with some possible causes and solutions. For any problem,

the first thing that should be checked for is a grid error at the trouble spot, such as a
discontinuity or lines crossing over each other. The solutions listed here assume the

grid is not the problem.

.Symptom Possible cause/cure

"TROUBLE AT GIVTRr'

message at beginning of run

Outer H-grid lines definedby variables

IBEG, IEND, J'BEG, and JEND are not

contained entirely within the inner

O-grid; regenerate grid (In some cases, it

is possible to visually determine what the

values of IBEG, etc should be and simply

hardcode them in the routine RESTIN.).

Density and/or energy less than

zero on or near the airfoil surface

(particularly the trailing edge);

may appear in the form of an error

message from CONVRG, or a bad

argument to mathlib occuring in MUKN

Time step too large; reduce it and

continue running.

Incorrect Reynolds number has also been

a cause; this can be hardcoded in

routine RESTIN.

Bad argument to mathlib occuring in

MUTR routine

Incorrect Reynolds number, or

initial guess problems; less frequent

eddy viscosity calculation in beginning

has been known to smooth out "bad"

points.

Bad argument to mathlib occuring in

CORREC

Incorrect or discontinuous inlet

boundary values; re-initialize flowfield.
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RAI3DS Subroutines

RAI3DS (main routine): reads input file in Unit 3;
RESTIN:

JACBIN:

TRIANG:

GIVTRI:

HDATA:

EIGEN:

CONTRL:

GMOVE:

RHSSI:

MUKN:

MUTRSI:

MUTR2D:

FLUXR:

VFLUX:

STCONT:

LHSSI:

calls:

reads initial flow file or restart file from previous run

calculates Jacobians for the variable transformation, i.e.

(x,y,z)
calculates factors for interpolation of flowfield at inner

O-grid/outer H-grid interface; calls:

for the given point in the given grid, fred the triangle in the

other grid in which the point lies and determine the weights

of the three points for interpolation

(called in 2D cases only) reads H-ratio data in Unit 4,

linearly interpolates in x to define H at every grid point

(called in steady-state cases only) calculates grid-dependent

time step

controlling routine for each solution iteration; calls:

(called in multirow cases only) moves rotating grids relative

to stationary grids according to size of time step; if rotors

have passed stators, i.e., a cycle has been completed,

applies periodic shift to rotors to begin new cycle

controlling routine for computing right hand side of Eq. 3

(chapter 4) for stator inner O-grids; loop 10 calculates

_-direction contribution, loop 80 calculates 1J-direction

contribution, loop 160 calculates q-direction contribution;

calls:

calculates kinematic viscosity for stator inner O-grid

(called in 3D cases only) calculates eddy viscosity for stator

inner O-grid in rl-direction and q-direction; loop 10

calculates viscosity below midspan away from the wall;

loop 210 calculates it above midpsan away from the wall;

loop 410 calculates it below midspan close to wall; loop

610, above midspan close to wall

(called in 2D cases only) calculates eddy viscosity for stator

inner O-grid in rl-direction only

computes the numerical flux vectors Ee, be, and Ge in Eq. 3

(chapter 4) using Roe's scheme for stator inner O-grid
computes viscous flux vectors Se and 7e for stator inner grid

(called in 2D cases only) calculates stream tube contraction
terms (H-ratio) instead of the G p vector

controlling routine for computing the left hand side of Eq. 3
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SMATRX:

VMAT:

BTRI:

RHSRI:
MUKN
MUTRRI
MUTR2D
FLUXR
VFLUX
STCONT

LHSRI
SMATRX
VMAT
BTRI

PGRID:

RHSSO:

SRINT:

MUKN:

MUTRSO:

FLUXR:

(chapter 4) and solving for Qp+1., loop 10 inverts the

solution matrix in the _-direction, loop 120 inverts in the

rl-direcfion, loop 250 inverts in the q-direction; implicit

inlet/exit boundary conditions are applied within the

_-direction loop, implicit surface boundary conditions are

applied within the rl-di_ec_on loop_: calls:
computes the matrices A, B, and C in Eq. (3) for stator

inner grids; called once in each loop
computes the matrices M andN in Eq. (3) for stator inner

grids; called only in T1- and q-direction loops
inverts the given matrix; called once in each loop

see above descriptions under RHSSI; all are the
same here except they are applied to rotor inner
O-grids instead of stator grids

see above descriptions under LHSSI; all are the
same here except they are appiled to rotor inner
O-grids insead of stator gnas

defines solution above and below periodic boundaries of the

outer H-grid, i.e. the boundaries in the circumferential
direction, for use in RHSSO

controlling routine for computing right hand side of Eq. 3

(chapter 4) for stator outer H-grids; loop 10 calculates

_-direction contribution, loop 180 calculates rl-direction

contribution, loop 340 calculates q-direction contribution:
calls:

interpolates flowfield onto outer H-grid at inner O-grid
interface from the inner grid flowfield, using interpolation
factors calculated in TRIANG

calculates kinematic viscosity for stator outer H-grid

(called in 3D cases only) calculates eddy viscosity for stator

outer H-grid in rl-direction and q-direction; loop 10
calculates viscosity below midspan; loop 210 calculates it

above midpsan

computes the numerical flux vectors Ep, Fp, and G p in Eq. 3

(chapter 4) using Roe's scheme for stator outer H-grid
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STCONT:

VFLUX:
LHSSO:

SMATRX:

VMAT:

BTRI:

PGRID:

RHSRO
SRINT

MUKN
MUTRRO
FLUXR
VFLUX
STCONT

LHSRO
SMATRX
VMAT
BTRI

RHSRL
MUKN
FLUXR
VFLUX

LHSRL
SMATRX
VMAT
BTRI

CORREC:

WALTMP:

BCSURF:

(called in 2D cases only) calculates stream tube contraction
terms (H-ratio) instead of the G4' vector

computes viscous flux vectors _ and 7e for stator outer grid

controlling routine for computin_ the left hand side of Eq. 3
p÷l-"

(chapter 4) and solving for Q ; loop 10 inverts the

solution matrix in the _-direction, loop 190 inverts in the

rl-direction, loop 330 inverts in the g-direction; implicit

inlet/exit boundary conditions are applied within the

_-direction loop, implicit surface boundary conditions are

applied within the ri-di_ction loopi calls:
computes the matrices A, B, and C in Eq. (3) for stator

outer grids; called once in each loop

computes the matrices M and N in Eq. (3) for stator outer

grids; called only in rl- and g-direction loops

inverts the given matrix; called once in each loop

see above description

see above descriptions for RHSSO; all are the
same here except they are applied to rotor outer
H-grids instead of stator grids

see above descriptions for LHSSO; all are the
same here except they are applied to rotor outer
H-grids instead of stator grias

see above descriptions for RH.SSI and LHSSI;
all are the same here except they are applied to
tip clearance grids; note there is no call to an eddy
viscosity routine - eddy viscosity is assumed to be
zero in file clearance region

applies explicit boundary conditions at all boundaries,

including all solid surfaces, periodic boundaries, inlet/exit

boundaries, inner/tip grid interface for cases with tip
clearance, and row interfaces for multirow cases; calls:

calculates temperature on solid surfaces; called only if the

option was chosen to specify wall temperature

imposes solid surface boundary condition, either adiabatic
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CONVRG:

WRTPS:

WRTEXT:

RESTOT:

PLOT3D:

wall, specified wall temperature, or specified heat flux

calculates and prints out change in solution from previous
time step, specifically, change in energy

prints out blade surface static pressure distribution at
midspan

prints out exit total pressure across pitch at midspan
writes restart file with new solution

writes grid and solution in PLOT3D format for viewing

Miscellaneous routines:

SHIFT:

PUTXYZ,GETXYZ:

PUTAJA,GETAJA:

PUTQ,GETQ:
PUTOLD,GETOLD:

PUTH,GETH:

PUTSTR,GETSTR:

PUTFMP,GETrMP:

PUTrRP,GETFRP:

applies periodic shift to airfoil grids for multiblade cases;

this saves on storage, as only one copy of the grid must be
stored

puts/gets grid arrays on SSD

puts/gets Jacobian arrays on SSD

puts/gets current Q arrays on SSD

puts/gets differential (QD) arrays on SSD

puts/gets H-ratio arrays on SSD

puts/gets inner QD grid (for use in RHSRL) on SSD

puts/gets Q or QD arrays to be stored temporarily on SSD

puts/gets outer/inner interface interpolation factors on SSD
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Symmetry Condition

A symmetry condition may be used in the solver for axisymmetric cases in
order to, in effect, increase grid resolution in the spanwise direction. There were two
options for imposing symmetry implemented in the solver, only one of which was
successfully used. The other was left in with the intention of later debugging, but the
problem was never resolved and this option should not be used. This is symmetry
option number 2 in the RAIJOB shell script. The intent of this option is to allow the
full grid capability of the program to be used for half the span, and modify the

boundary condition applied at the uppermost K-line to assume a symmetry condition.
That is, the geometry contained in the computational grid is only half of the actual
airfoil. The difference between this and option number 1, which was run successfully,

is that option 1 requires the full airfoil to be present and accounted for by several
K-lines. In this case, most, but not all, of the K-lines are distributed below the
midspan, the solution is calculated from hub to midspan, and a symmetry condition is
applied at the midspan.

To generate a grid to which the symmetry option is applicable, the user should
have a three-dimensional axisymmetric configuration in the input file, and run the grid

generator as usual up to this point:

ENTER KMAX (RADIAL PNTS) BEFORE ADDITION, FORMAT=I2

(DEFAULT=25, MAX=51(NO ADDITION))

The number of K-lines specified here should be based on the total number of lines

desired for the half-span. The number that is chosen here will determine how many

lines will be retained in the UPPER half of the span, that is, those that will not be used

in the calculation. The remaining K-lines allowed in the solver will be distributed

between the hub and midspan. For example, choosing 15 here will result in a final

grid with 7 K-lines above midspan and 42 lines below midspan (due to the maximum

K-dimension being set to 49 in the current version of the RAI3DS system).

Continuing with this example, in which a three-dimensional airfoil with a total span of

6.0 inches was used,

15

CURRENT DIMENSIONS:
NOTE THAT POINTS WILL BE ADDED IF AXIAL SPACING AT

INLET/EXIT BOUND IS CHANGED, AND AGAIN IN OVRLAP,
ALSO RADIAL DISTRIBUTION CAN BE MODIFIED LATER.

AIRFOIL: 1

OUTER: 50, 31 INNER: 101, 21 RADIAL: 15 15
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PAUSE...

ENTER 1 TO INCREASE CLUSTERING AT T.E. FOR AIRFOIL 1

ENTER 1 TO CHANGE K-LINE SPACING AND/OR DIST. IN TIP

(DEFAULT: SETA1 = SETA2 = 0.03% SPAN = 1.80000E-03)

l

This option must be excercised to re-distribute the K-planes.

ENTER 1 TO DISTRIBUTE K-LINES FOR A SYMMETRY CONDmON

!

The above question will be asked only for a three-dimensional, planar stator.

SPAN = 6.00000 KMAX = 15

ENTER DIF BTWN HUB AND 2ND K-LINE, F10.0

.002

With this input, the program will use a spacing of 0.002 inches at the hub, and a

spacing of 6.0/(NKA-KMAX) at the midspan, where NKA is currently set to 49, and

KMAX for this case is 15.

RADII OF K-PLANES ACCORDING TO ORIGINAL STRETCHING

HAVE BEEN WRi'n'EN TO A FILE.

HALT EXECUTION OR HIT ENTER TO CONTINUE

PAUSE.

At this point, the plot of radii as a function of K-index looks like this:
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Note that there are two points above midspan that mirror the two points below

midspan. This is necessary for the implementation of the line of symmetry boundary

condition in the solver. The following is a view in the axial direction of the final grid

generated by continuing the above example:

$. 0000

4.0000 _

Z _

2.0000 -

O.

I ....

!!!!
lili

!!!!

Ilil
i!!!
Ill'

I;;;
Kill

|ill

Note that K-line 40 is at Z=3.0, which is the midspan. This is what should appear in

the first line of FORTRAN unit 3, input to the flow solver. Unit 3 is defined by the

here document 'fort.3' in the UNICOS jobstream created by RAIJOB. If the value of

KMID (in this case, 40) is not properly specified, the symmetry condition will not be

implemented properly.
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Boundary Conditions

Inlet Boundary_ Condition

In the following expressions, u,v,w are velocities in the x-, y-, and z-directions, p is

static pressure, p is density, c is speed of sound, s is entropy, and h is total enthalpy,

(x is arctan(vlu) and (p is arctan(w/u); boldface type indicates a new updated value,

subscript 0 indicates an initial value, and subscripts of 1 and 2 indicate a current value

at inlet and one point downstream of inlet, respectively.

The inlet boundary condition in ROTOR3 was the following:

2
Reimann invariant 1 = R 1 = u o + _,------T(W)

Reimann invariant 2 = R = u
2 2

u 1 = (R1 + R2)/2
V = V

1 0
W=W

1 0

T-1
C =

1 4

S = S
1 0

-R)(Ra 2

2

Pl =

The following modifications were made to, in effect, hold inlet total pressure, in

addition to reducing the stiffness of the boundary condition:
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First define the variable h' as follows:

2
2c 2 2 2

h' =_+ u = 2h (v +w) (1)
?-1

Assuming h
1 = h o, that is, inlet total enthalpy is held at its initial value, _

2 2
h' = 2h - ( +w ) (2)

I 0 -VI I

It can be shown that (2), together with the assumption

2c
2ca- u - --a- R (3)- _ _

ul T-1 2 T-1 2 '

yields:

2 2 2

(I+--7_1)Cl
4R 2

+-------z-c - (h'l-R)T-I I 2
= 0

This is a quadratic equation for c
1

Then,

that can be solved with the quadratic formula.

2c
u = R +----a-

1 2 _/-I

= u tan(c_ o)Pl 1

= u tan((p )
W1 1 0

S=S
1 0

2

Pl=
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Surface boundary conditions

The surface boundary condition in ROTOR3 was a first-order adiabatic wall

condition, that is, in addition to the no-slip condition for velocity, zero normal
pressure and density gradients were imposed. Options were added to specify either

wall temperature or heat flux on the surfaces, which modified the density condition.

The specified wall temperature condition that was implemented was developed

by Griffin (Ref. 7). It requires an additional input file containing adiabatic wall

temperatures on the surfaces, and the wall temperature is prescribed as a percentage of

the adiabatic wall temperature. The percentage is input in the RAIJOB shell script.

The adiabatic wall temperature file can obtained by running RAI3DS with the
adiabatic wall condition; the file will get written out in routine WALTMP, which will

also read the f'de if the option to specify wall temperature is chosen. The UNICOS

jobstream will need modification to assign these files to the file environment.

The following is the derivation of the second-order density condition allowing

specified heat flux. Here, Q is heat flux, k is the coefficient of thermal conductivity, R

is the specific gas constant, T is temperature, p is static pressure, p is density, and y is
distance from the wall.

Assume

Q = -k_ = -k = -- 2
dy dy n p

Assuming a zero normal pressure gradient, this yields
2

kp dp dp p Q'
Q = ------7-(--) _ - ,

Rp dy dy p
where Q'=

QR

k

Now assume that p is some quadratic function of y, given by

2
p = ay +by +c

Then, values of p at y 1, y2, and y3 are given by the system
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ay 1 + by 1 + c = Pl

2

ay 2 + by 2+ c = P2

2

ay 3 + by 3 + c = P3

Assuming Yl is zero, that is, at the wall, the system reduces to

2 2

b = (P2 - Pl) Y3 " (P3_- pl) Y2

YrV3 " Y2 Ys

Differentiating the quadratic equation for p,

dp_d---_-P= 2ay + b =, u_b
dy dy

From the previous expression for d_'

2 2

(P2- Pl ) Y3 - (P3- Pl )y2
7 Z

Y2Y3 - Y2 Y3

at the wall.

2

pQ'

P

Algebraically solving for p_,

2 2 2 2 2

P:,Y3 " PsY2 P Q" (Y:,Y3 "Y2 Y3)
p =1 ,l 1.

Y32- Y22 P (Ys - Y2 )

The values ofp and p at y is used in the implementation of the condition. To define
• 2 .

the" value of Q (note the solver will expect the gwen heat flux value to be properly
nondimensionalized and to contain the factors of R and k), divide the dimensional Q

by the dimensional k, and use a value of 1.0 for R to be consistent with the solver's

nondimensionalization scheme. This will result in a value with units of degrees over

length. Divide by inlet total temp._rature and convert remaining length unit to inches
to obtain the value of Q' in inches This is what should be input to the RAUOB shell

script.
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